

“Bringing together Research and Industry for the

Development of Glider Environmental Services”
This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 635359

DELIVERABLE D3.3
“Interface standards for applications of deep and ultra-

deep glider”

ABSTRACT

The overall goal of BRIDGES is to develop two autonomous gliders to operate in the deep-

sea environment (up to 5000m). The use of the acquired knowledge from previous glider

projects such as the SEA EXPLORER product, the SPAN vehicle, and the AUTOSUB LR

from NOC will be an asset and helpful for this purpose.

Current glider platforms capture the data of the payload and navigation sensors in a

proprietary manner. Though the storage of the gathered data is harmonized to a certain

extent (i.e. using the EGO Glider profile for NetCDF), discovery and access of these is not

established in an interoperable way that allows straight-forward integration of different

platforms.

This document provides an assessment of the current state of glider data storage and

retrieval, identifies the existing gaps for further data exploitation and provides a proposal for

a standards based approach for the discovery and access of glider data. The Sensor Web

Enablement (SWE) standards family of the Open Geospatial Consortium (OGC) will be used

to outline a service infrastructure that allows data analysts to easily search for and integrate

glider data of different vendors.

During the remainder of the BRIDGES project this document will be further refined, taking

also into account experiences gathered through prototyping activities and exchange with

other relevant projects.

DOCUMENT TYPE Deliverable

DOCUMENT NAME:
BRIDGES_D3.3_Interface standards for applications of deep and ultra-deep

glider_vfinal.docx

VERSION: vfinal

DATE: 13.05.2016

STATUS: S0

DISSEMINATION LEVEL: PU

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 2

AUTHORS, REVIEWERS

AUTHOR(S): Matthes Rieke, Simon Jirka

AFFILIATION(S): 52°North GmbH

FURTHER AUTHORS:
Ehsan Abdi, Justin Buck, Louise Darroch, Daniel Hayes, Alexandra Kokkinaki, David White,

Michael Field, Laurent Beguery

PEER REVIEWERS: Daniel Hayes, Michael Field

REVIEW APPROVAL: Approved Yes Rejected (to be improved as indicated below) No

REMARKS /

IMPROVEMENTS:

VERSION HISTORY

VERSION: DATE: COMMENTS, CHANGES, STATUS:
PERSON(S) / ORGANISATION

SHORT NAME:

0.1 01/02/2016 Initial version Matthes Rieke, Simon Jirka

0.2 06/02/2016 Sections on Related Work and Approach Matthes Rieke

0.3 07/02/2016 Diagrams for system architecture and O&M model Matthes Rieke

0.4 07/02/2016 Current state of Glider data workflow (Seaglider) Daniel Hayes, Ehsan Abdi

0.5 17/02/2016 Sections on Related Work (OGC, ISO) Simon Jirka

0.6 22/02/2016 Sections on Related Work (Research Projects) Justin Buck, Simon Jirka

0.7 11/03/2016 Abstract, SensorML Approach, System Architecture Simon Jirka, Matthes Rieke

0.8 31/03/2016 First full version for review Simon Jirka

1.0 03/05/2016 Integrating Review Feedback; SEA EXPLORER content
Michael Field, Laurent

Beguery, Matthes Rieke

1.1 11/05/2016 Integrate additional Review Feedback Daniel Hayes, Matthes Rieke

VFINAL 13/05/2016 Final version Matthes Rieke

VERSION NUMBERING

v0.x draft before peer-review approval

v1.x After the first review

v2.x After the second review

vfinal Deliverable ready to be submitted!

STATUS / DISSEMINATION LEVEL

STATUS DISSEMINATION LEVEL

S0 Approved/Released/Ready to be submitted PU Public

S1 Reviewed
CO Confidential, restricted under conditions set out

in the Grant Agreement S2 Pending for review

S3 Draft for comments
CI Classified, information as referred to in

Commission Decision 2001/844/EC. S4 Under preparation

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 3

TABLE OF CONTENTS
1	 Introduction 6	

2	 Reference Documents 7	

3	 Glossary 9	

4	 Related Work 11	

4.1	 International Standards 11	

4.1.1	 Sensor Web Enablement 11	

4.1.2	 NetCDF 15	

4.1.3	 W3C Semantic Sensor Networks (SSN) 16	

4.1.4	 ISO 19115 - Geographic Metadata 16	

4.2	 Existing Software Solutions 17	

4.2.1	 ncSOS 17	

4.2.2	 ERDDAP 17	

4.2.3	 52°North SOS 18	

4.2.4	 Geoinformation Enabling Toolkit 18	

4.3	 Research Projects 19	

4.3.1	 The Ocean of Tomorrow Projects 19	

4.3.2	 AtlantOS 24	

4.3.3	 GROOM 24	

5	 Status Quo and Current Workflow 25	

5.1	 Internal data storage patterns, data transmission and recovery 25	

5.1.1	 Seaglider 25	

5.1.2	 Slocum 26	

5.1.3	 SEA EXPLORER 27	

5.2	 Data Management (Quality Assurance) 28	

5.2.1	 Seaglider 28	

5.2.2	 Slocum 29	

5.2.3	 SEA EXPLORER 29	

5.3	 Mission planning 30	

5.4	 Control 30	

5.4.1	 Seaglider 30	

5.4.2	 Slocum 31	

5.4.3	 SEA EXPLORER 33	

6	 Requirements 35	

6.1	 Data Flows 35	

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 4

6.2	 Security 35	

6.3	 Access Control 35	

6.4	 Data Operations 36	

6.5	 Interoperability 36	

7	 Approach 37	

7.1	 Identification of Glider Parameters 37	

7.1.1	 Calibration 37	

7.1.2	 Measured Parameters 37	

7.2	 Parameter Mapping 39	

7.2.1	 Glider Data Model for Observations & Measurements 39	

7.2.2	 NetCDF 40	

7.2.3	 SensorML 42	

8	 System Design 48	

8.1	 Component Architecture 48	

8.2	 Glider Data Management 49	

8.2.1	 Sensor Data Workflow 49	

8.2.2	 Metadata Workflow 59	

8.3	 Glider Tasking 59	

9	 Implementation Patterns 61	

10	 Conclusion 63	

11	 Future Work 64	

12	 Recommendations 66	

Appendix A – File Contents Examples (Seaglider) 67	

Appendix B – Base station calibration file example (Seaglider) 71	

Appendix C – SOS Profile – GetCapabilities Response 73	

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 5

FIGURES
Figure 1: SOS Interface Method Overview ... 12	
Figure 2: Observation & Measurements Example .. 14	
Figure 3: ERDDAP service types (Source: ERDDAP Tech Talk) ... 17	
Figure 4: Layered architecture of the 52°North Sensor Observation Service 18	
Figure 5: NeXOS Sensor Observation Service Viewer .. 20	
Figure 6: An example SensorML record from the SenseOCEAN project. 22	
Figure 7: Schematic describing the proposed implementation or 52°North and ERRDAP with

BODC as part of the SenseOCEAN project. .. 23	
Figure 8: Structure of an OM_Observation document for glider data. 39	
Figure 9: Layers of Proposed SensorML Model ... 43	
Figure 10: Elements of Glider Type Descriptions ... 44	
Figure 11: Element of Glider Instance Descriptions ... 44	
Figure 12: Elements of Instrument Type Descriptions ... 45	
Figure 13: Elements of Instrument Instance Descriptions .. 45	
Figure 14: System Architecture Design. ... 48	
Figure 15: SOS interface methods of the glider data profile. ... 49	
Figure 16: Overview of the components covered by the Sensor Web architecture 61	

TABLES
Table 1: File types of Persistors ... 26	
Table 2: SEA EXPLORER control commands ... 34	
Table 3: Overview of a few common Data Variables ... 38	
Table 4: Overview of Navigation Parameters ... 38	
Table 5: Mapping of EGO NetCDF field to SensorML elements .. 46	

LISTINGS
Listing 1: O&M quality encoding of glider data. .. 42	
Listing 2: Observation for science data with inline encoded data values. 51	
Listing 3: Observation for navigation data with inline encoded data values. 52	
Listing 4: Out-of-band observation for science data, referring to an external NetCDF file. 55	
Listing 5: Out-of-band observation for navigation data, referring to an external NetCDF file. 56	

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 6

CONTENT

1 Introduction
The overall goal of this project is to develop two autonomous gliders to operate in the deep-

sea environment (up to 5000m). The use of the acquired knowledge from previous glider

projects such as the SEA EXPLORER product, the SPAN vehicle, and the AUTOSUB LR

from NOC will be an asset and helpful for this purpose. The diversity of autonomous ocean

observing platforms and sensors is growing massively. At the same time standardised data

exchange and formats from other disciplines are being adopted and adapted by the

oceanographic data community (e.g. the SWE developments within the ODIP and ODIP II

projects). Use of such standards will reduce the number of proprietary formats and protocols.

It is hoped that in the long term standardisation will reduce the cost of data dissemination,

dataset integration and long-term archiving of valuable data.

Current glider platforms capture the data of the payload and navigation sensors in a

proprietary manner. Though the storage of the gathered data is harmonized to a certain

extent (i.e. using the EGO Glider profile for NetCDF), discovery and access of these is not

established in an interoperable way that allows straight-forward integration of different

platforms.

This document provides an assessment of the current state of glider data storage and

retrieval, identifies the existing gaps for further data exploitation and provides a proposal for

a standards based approach for the discovery and access of glider data. The Sensor Web

Enablement (SWE) standards family of the Open Geospatial Consortium (OGC) will be used

to outline a service infrastructure that allows data analysts to easily search for and integrate

glider data of different vendors.

In summary, this document is intended to provide recommendations on how Sensor Web

technology may be used to facilitate the distribution of collected glider data and to support

the integration of this data with observations and other geospatial data from other sources.

Thus, the re-use of glider observations will become easier for scientists. At the same time,

glider operators will receive support and guidance how to optimise glider data management

and distribution.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 7

2 Reference Documents
Abramowitz, M., Stegun, I. A., Eds., Handbook of Mathematical Functions (Applied

Mathematics Series 55), Washington. DC: NBS, 1964, pp. 32-33.

Botts, M., A. Robin, "OGC Implementation Specification: Sensor Model Language

(SensorML) 2.0.0 (12-000)". Wayland, MA, USA: Open Geospatial Consortium Inc., 2014.

Bröring, A., J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang, R. Lemmens,

"New Generation Sensor Web Enablement," MDPI Sensors, vol. 11, pp. 2652-2699, 1 March

2011 2011.

Bröring, A., C. Stasch, J. Echterhoff, "OGC Implementation Specification: Sensor

Observation Service (SOS) 2.0 (12-006)". Wayland, MA, USA: Open Geospatial Consortium

Inc., 2012.

Carval, T. et al, EGO gliders User’s manual. 2013. Online at:

http://dx.doi.org/10.13155/34980

Cox, S. "OGC Implementation Specification: Observations and Measurements (O&M) - XML

Implementation 2.0 (10-025r1)". Wayland, MA, USA: Open Geospatial Consortium Inc.,

2011.

Devaraju, A., S. Jirka, R. Kunkel, J. Sorg, "Q-SOS - A Sensor Observation Service for

Accessing Quality Descriptions of Environmental Data". ISPRS International Journal of Geo-

Information, vol. 4, pp. 1346-1365, 10 August 2015 2015.

Echterhoff, J., T. Everding, "OGC Discussion Paper: OGC Sensor Event Service (SES) 0.3.0

(08-133)". Wayland, MA, USA: Open Geospatial Consortium Inc., 2008.

INSPIRE Cross Thematic Working Group on Observations & Measurements, "D2.9

Guidelines for the use of Observations & Measurements and Sensor Web Enablement-

related standards in INSPIRE Annex II and III data specification development,". Ispra, Italy:

European Commission Joint Research Centre, 2014.

ISO TC 211, "ISO 19115-1:2014 Geographic information -- Metadata -- Part 1:

Fundamentals". Geneva, Switzerland: International Organization for Standardization, 2014.

ISO TC 211, "ISO 19156:2011 - Geographic information -- Observations and measurements

- International Standard". Geneva, Switzerland: International Organization for

Standardization, 2011.

Jirka, S., D. M. Toma, J. del Rio, E. Delory, "A Sensor Web architecture for sharing

oceanographic sensor data," in Sensor Systems for a Changing Ocean (SSCO) 2014 at the

Sea Tech Week 2014, Brest, France, 2014.

Klaus, B., P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1986.

Müller, M., B. Proß, "OGC Implementation Specification: Web Processing Service (WPS)

2.0.0 (14-065)". Wayland, MA, USA: Open Geospatial Consortium Inc., 2015.

Myer, R. L., “Parametric oscillators and nonlinear materials,” in Nonlinear Optics, vol. 4, P. G.

Harper and B. S. Wherret, Eds. San Francisco, CA: Academic, 1977, pp. 47-160.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 8

O’Reilly, T., "OGC Implementation Specification: OGC PUCK Protocol 1.4 (09-127r2)".

Wayland, MA, USA: Open Geospatial Consortium Inc., 2012.

Simonis, I., "OGC Best Practice: Sensor Alert Service (SAS) 0.9 (06-028r3)". Wayland, MA,

USA: Open Geospatial Consortium Inc., 2006.

Simonis, I., J. Echterhoff, "OGC Implementation Specification: Sensor Planning Service

(SPS) 2.0.0 (09-000)". Wayland, MA, USA: Open Geospatial Consortium Inc., 2011.

Stein, L., “Random patterns,” in Computers and You, J. S. Brake, Ed. New York: Wiley,

1994, pp. 55-70.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 9

3 Glossary
AUV Autonomous Underwater Vehicle

CSW Catalogue Service for the Web

CTD Conductivity Temperature Depth

DAC Data Assembly Centre

DBMS Database Management System

EGO Everyone’s Gliding Observatories

ERDDAP Environmental Research Division's Data Access Program

EXI Efficient XML Interchange

GEOSS Global Earth Observing System of Systems

GIS Geographic Information System

GOOS Global Ocean Observing System

ISO International Standards Organisation

JSON JavaScript Object Notation

JSON-LD JSON for Linking Data

KVP Key Value Pair

NetCDF Network Common Data Format

NOAA National Oceanic and Atmospheric Administration

O&M Observations & Measurements

OGC Open Geospatial Consortium

OPeNDAP Open-source Project for a Network Data Access Protocol

OWL Web Ontology Language

RDF Resource Description Framework

SensorML Sensor Model Language

SOS Sensor Observation Service

SPS Sensor Planning Service

SSN Semantic Sensor Networks

SWE Sensor Web Enablement

UoM Unit of Measurement

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 10

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XML eXtensible Markup Language

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 11

4 Related Work

4.1 International Standards

4.1.1 Sensor Web Enablement
The Sensor Web Enablement (SWE) framework developed by the Open Geospatial

Consortium (OGC) aims to develop and maintain standards for the interoperable integration

of sensors and their observation data into Web-based (spatial) data infrastructures (Bröring

et al., 2011). There exist several document types within the OGC, representing the maturity

of a specification (e.g. discussion paper, best practice paper or standard). A specification can

be understood as a technical definition for a web service or data model (independent of the

grade of maturity) while a standard is the document that has been officially adopted by the

OGC. The following subsections introduce the core elements of the SWE architecture which

comprises specifications for Web service interface as well as data models and encodings.

4.1.1.1 Sensor	Observation	Service	
The OGC Sensor Observation Service (SOS) interface standard (Bröring et al., 2012) is the

most widely used Web service of the SWE suite. It has reached version 2.0 which

incorporates experiences gained during practical application of the first SOS version over

several years.

The SOS interface allows pull-based access to observation data as well as sensor metadata.

This means that the SOS acts as a mediator between clients and a measurement archive

(e.g. database) or sensor system. Through the SOS, it is possible for clients to query

observation data of heterogeneous sources via a standardized interface. On the one hand

the SOS standard defines a set of operations and their parameters and on the other hand it

relies of the data model/encoding standards of the SWE framework to provide standardised

outputs.

The core operations of the SOS interface are:

• GetCapabilities: Retrieve metadata about a SOS server (e.g. supported operations

and available data sets)

• DescribeSensor: Access metadata about the sensors or processes which have

generated the observation data offered by the SOS server

• GetObservation: Retrieval of observation data/measurements

An important extension of the SOS interface is a group of transactional operations

(InsertSensor and InsertObservation) for publishing new sensors and observations data on a

SOS server

Another important operation is the GetFeatureOfInterest operation which allows the retrieval

of the geometric features to which observations are associated. It provides the required

spatial context, by serving e.g. point or polygon features of the feature that is being observed

(see section 4.1.1.5 for an illustration of the relationship between observations and features).

Figure 1 illustrates the four interface methods and their corresponding response formats.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 12

Figure 1: SOS Interface Method Overview

4.1.1.2 	Sensor	Planning	Service	
The OGC Sensor Planning Service (SPS) (Simonis and Echterhoff, 2011) interface standard

offers functionality for controlling sensors and measurement processes. This means that the

SPS is not suited for accessing observation data but to control the process how this data is

generated.

Important operations of the SPS interface, which is also available in version 2.0, comprise:

• GetCapabilities: Retrieve metadata about a SOS server (e.g. supported operations,

sensors which can be controlled, tasks that can be executed by the sensors)

• DescribeTasking: Access information on how to formulate tasking requests (i.e.

required parameters and their types)

• GetFeasibility: Checking whether a task for a specific sensor is feasible or not (e.g. a

sensor might be blocked at a specific point in time by another task)

• Submit: Send a tasking request to an SPS server

• GetStatus: Determining the status of the execution of a task

• DescribeResultAccess: Determine how the data collected as result of a task can be

accessed (e.g. this operation might return a reference to a SOS server that provides

the collected data)

4.1.1.3 Eventing	
While the SOS offers pull-based data access (i.e. a request-response communication

pattern) in some cases it is necessary to deliver observation data to a consumer as soon as

the data is available (e.g. in alerting applications).

Such functionality requires push-based, asynchronous delivery of sensor data. Such an

eventing mechanism is based on a publish/subscribe communication pattern: A consumer

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 13

subscribes for a notification, the eventing component analyses incoming sensor data, and

forwards the new (relevant) observations to the subscriber in (near) real-time.

Within the OGC SWE framework, there is not yet a corresponding adopted standard

available. However there are several specifications available:

• OGC Sensor Alert Service (SAS) (Simonis, 2006): This specification is rather old and

was published as an OGC Best Practice Paper. However it has some drawbacks

because it is relatively tightly coupled to a specific communication protocol (XMPP)

and it does not support complex event processing concepts for detecting relevant

events.

• Sensor Event Service (SES) (Echterhoff and Everding, 2008): This specification (not

released as an official standard, but available as discussion paper) can be considered

as successor of the SAS: It supports the definition of complex event patterns that

shall be detected. For defining these rules the SES relies on the OGC Event Pattern

Markup Language (EML) Discussion Paper. However, the SES has not been

advanced to an official standard.

• OGC Pub/Sub standard
1
: This standard has been adopted in 2016 and it offers a

specification how to implement publish/subscribe communication for OGC Web

services. Thus, this standard should be considered as basis for implementing

eventing functionality. However, the OGC Pub/Sub standard goes beyond the SWE

framework and it does not offer further details on how to define patterns for event

subscriptions. This needs to be specified as an addition.

• OGC Web Processing Service (WPS) (Müller and Pross, 2015): In the OGC IMIS IoT

Pilot (2015-2016) an event processing profile of the Web Processing known as Web

Event Processing Service or WEPS, was discussed. It can be expected that this

profile together with the OGC Pub/Sub standard may help to build interoperable

eventing applications.

4.1.1.4 SensorML	
While the previous three specifications define Web service interfaces for sensor related

functionality, the OGC Sensor Model Language (SensorML) 2.0 (Botts and Robin, 2014)

offers a data model and XML encoding for metadata about sensors and measurement

processes (thus, the SOS uses SensorML as a response format of the DescribeSensor

operation). Measurement processes can range from singular sensor stations to complex

sensor platforms that form a system which also describes measurement processing steps in

high detail (e.g. that and how a normalization process is applied).

Typical elements which may be included in a SensorML document comprise for example:

• Keywords characterising a sensor

• Identifiers (e.g. serial numbers, sensor names/ids)

• Classifiers (e.g. information about application domains of a sensor)

• Characteristics (e.g. size, weight of a sensor)

• Capabilities (e.g. resolution, sampling rate, etc. of a sensor)

• Valid time (information for which time period a sensor description is valid)

• Input and outputs of a sensor or measurement process

1
 http://www.opengeospatial.org/projects/groups/pubsubswg

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 14

• Contact information (e.g. of the sensor operator, responsible scientist, manufacturer)

The SensorML standard has intentionally been defined in an application and domain

independent manner. This means that only a very small set of mandatory information is

provided in all SensorML documents. To increase interoperability between different

communities, it is important to develop sensor profiles with additional restrictions and

requirements that specify that certain information will be provided in a certain way. In this

context it is important to refer to the ongoing activities for developing a marine profile for

SensorML. BRIDGES is contributing to these efforts together with other projects such as

those listed in Error! Reference source not found..

4.1.1.5 Observation	&	Measurements	
Complementary to the metadata model and encoding of SensorML 2.0, the Observation and

Measurements (O&M) 2.0 standard offers a model (ISO TC 211, 2011) and an XML

encoding (Cox, 2011) for data observed by sensors (archived/delayed-mode as well as real-

time data). For O&M it is important to state that the data model has been adopted as an ISO

standard while the XML encoding is an OGC standard.

Typical information required for an observation conforming to the O&M standard comprises:

• Process: The sensor, model, or algorithm which has delivered the observed value

• Observed Property: The parameter which is observed (e.g. water temperature)

• Feature of Interest: The geographic feature to which the observed value is associated

• Observation Result: The measured value itself (including unit of measurement, if

applicable)

• Time Stamps: Different time stamps relevant to the observation

Figure 2 illustrates the relationship of the above described concepts.

Figure 2: Observation & Measurements Example

4.1.1.6 OGC	Standards	and	EXI	
XML documents may become quite large due to the way data are encoded. In certain

applications (e.g. sensor platforms that have limited communication bandwidth such as

gliders on the open ocean) there is a need to reduce the data volume. To allow a more

efficient transmission of XML documents, the World Wide Web Consortium (W3C) has

developed the Efficient XML Interchange (EXI)
2
 format which ensures a compact

2
 https://www.w3.org/TR/exi/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 15

representation of XML documents. Within the NeXOS project this approach has already been

successfully tested, so it can now be recommended for BRIDGES as well.

4.1.1.7 PUCK	Protocol	Standard	
The OGC PUCK standard (O’Reilly, 2012) is a complementary element of the SWE

framework. It is intended to ensure interoperability between sensor platforms and

instruments by defining mechanisms for automatic configuration.

The idea of PUCK is that instruments shall carry and be able to provide all information

needed for connecting to the instrument and accessing its data. For this purpose, PUCK

provides a simple protocol to access this configuration information from an instrument via

communication channels such as RS-232 and Ethernet.

The information provided by an instrument (an instrument datasheet) includes at least a

unique identifier (serial number) of the instrument, an identifier of the manufacturer, and a

few further metadata elements.

While the other SWE standards are usually implemented on a higher abstraction layer,

PUCK is intended to be implemented in the firmware of instruments.

For BRIDGES, PUCK is relevant for facilitating the link between instruments and Gliders,

providing a harmonized access to metadata and data, but not for the communication

between Gliders and stations on the shore.

4.1.2 NetCDF
The Network Common Data Form (NetCDF)

3
 is a data format that is designed for sharing

array-oriented scientific data. Developed by the University Corporation for Atmospheric

Research (UCAR), the latest version 4.1 has support of many libraries from all major

established programming languages and client software is available for all common

operating systems.

A NetCDF dataset is always self-describing, i.e. it provides metadata in the header that

provides details on the contained data and corresponding units of measure. Platform

independency is achieved by a set of software libraries, many of them available as open

source software.

NetCDF is well-established in many scientific domains such as climatology, meteorology and

oceanography. It is a supported input/output in many GIS applications and data analysis

tools.

4.1.2.1 EGO	Profile	
Everyone’s Gliding Observatories (EGO) is an international network of partners in the

oceanology domain dedicated to the promotion of glider technology and its applications.

Besides coordination, workshops and training, EGO also works on the definition of a NetCDF

profile to streamline the storage of glider-gathered data sets.

The current version of the EGO gliders User's manual (Carval et al., 2013) firstly defines a

workflow for data management and access that takes the roles of three organizational units

(Principal Investigator, Data Assembly Centre (DAC), Global DAC) into account. The goal is

3
 http://www.unidata.ucar.edu/software/netcdf/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 16

to ensure data quality among different glider operators and to provide transparency on the

quality of data sets to users. All data sent to Ifremer and the EGO GADC following the EGO

process is made freely available to everyone.

The NetCDF EGO implementation is based on the community-supported Climate and

Forecast specification. This specification defines standard vocabulary and metadata

conventions. EGO extends these conventions with a special focus on in-situ measurements

and to support the EGO workflow described above. The profile covers data structures for

navigational properties (trajectory data based on GPS and inertial sensors), global attributes

(spatial and temporal coverage, producer information, etc.) and the actual measured data

variables (e.g. salinity, water temperature).

The system architecture proposed in this document makes full use of the NetCDF EGO

profile in order to benefit from its establishment among the glider community. Following this

approach ensures that existing systems can continue to operate in the same manner and

facilitates the acceptance of the architecture design.

4.1.3 W3C Semantic Sensor Networks (SSN)
The W3C Semantic Sensor Network Incubator Group has worked on the development of an

ontology for describing sensors and sensor networks in the context of Sensor Web

applications. Furthermore the SSN Incubator Group has provided recommendations on how

this ontology may be used for enabling SWE based infrastructures. This group has

completed its work and the resulting findings are documented in a final report
4
:

The resulting Sensor and Sensor Network ontology (SSN ontology) combines aspects

related to both sensor descriptions (SensorML) as well as observation models (i.e. O&M).

Thus, it offers a way to capture semantics of observation data and the underlying processes.

This allows to comprehend how data was captured, processed as well as embedding

observations into a context (e.g. by linking to a phenomena ontology).

In addition, the results of the SSN Incubator Group also provide direction on how to end

existing SWE infrastructures with semantic annotations.

Although implementation of this ontology in productive systems are limited, its concepts can

be applied within the BRIDGES SWE architecture, e.g. by linking the observed properties of

a glider to existing vocabularies such as the British Oceanographic Data Centre (BODC)

Dictionary.

4.1.4 ISO 19115 - Geographic Metadata
The ISO 19115 family of standards offers standardised models as well as encodings for

metadata describing geospatial information resources. For BRIDGES, especially the

following two documents are relevant:

• ISO 19115-1:2014: Geographic information -- Metadata -- Part 1: Fundamentals:

Defines a model for describing geospatial information resources (ISO TC 211, 2014)

• ISO/DTS 19115-3: Geographic information -- Metadata -- Part 3: XML schema

implementation of metadata fundamentals: This standard, which is currently in

development provides an encoding for the model specified in ISO 19115-1

4
 https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 17

These two documents are complemented by ISO 19139 which provides an XML encoding for

the metadata handled by a Catalogue Service for the Web (CSW) server implementing the

ISO Metadata Application Profile. A CSW can thus be used to discover glider data served by

SOS instances.

For BRIDGES, the ISO 19115 standard family is relevant to provide geospatial metadata.

While there is no standard explicitly supporting the description of sensors, ISO 19115 can be

used for indirectly describing the sensors through the data sets they are acquiring.

4.2 Existing Software Solutions
This sections provides a brief overview of existing software packages that relate to the

current state of glider software or the proposed approach described in section 7.

4.2.1 ncSOS
Based on the THREDDS

5
 (Thematic Real-time Environmental Distributed Data Services)

server, the ncSOS
6
 provides an OGC SOS 1.0.0 implementation with a special focus on the

NetCDF data format. Using the underlying THREDDS instance, this implementation maps

and outputs NetCDF files to the corresponding SOS interface methods. For example, a

DescribeSensor request (see section 4.1.1.1) will retrieve the required information from the

header part of the NetCDF file. It has full support for geometries defined in the CF-1.6

Discrete Sampling Geometries which are also used by the NetCDF EGO Profile.

4.2.2 ERDDAP
The Environmental Research Division's Data Access Program (ERDDAP) is a web service

software, developed by NOAA, which provides harmonized access to data stored in many

different data formats or even different web services. It does not only provide data format

transformations but also a URL-based API, based on the OPeNDAP (Open-source Project

for a Network Data Access Protocol) specification, to specifically define filters (e.g. spatial

and temporal, keyword or category filters).

The basic concept of ERDDAP is the mapping of existing data sets into the two internal data

set formats: griddap and tabledap.

Figure 3: ERDDAP service types (Source: ERDDAP Tech Talk7)

5
 http://www.unidata.ucar.edu/publications/factsheets/2007sheets/threddsFactSheet-1.pdf

6
 https://github.com/asascience-open/ncSOS

7
 http://coastwatch.pfel.noaa.gov/erddap/images/erddapTalk/erddapTechTalk.html

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 18

For example, classic coverage data (e.g. satellite imagery) is stored as a griddap structure,

whereas in-situ time series data will be held as tabledap. This segmentation into two

categories makes it easy to transform between different data formats. The user can request

time series data for a given measurement station, ERDDAP would request an SOS,

transform the data into the internal tabledap format and then return it to the user in the

desired format (e.g. NetCDF).

4.2.3 52°North SOS
The 52°North Sensor Observation Service 4.x

8
 implements the OGC SOS standard versions

1.0.0 and 2.0. The implementation comprises all extensions defined in the specification.

Figure 4: Layered architecture of the 52°North Sensor Observation Service

With its layered architecture, shown in Figure 4 the SOS can be flexibly connected to

different data sources ranging from file-based approaches to different database systems. By

default, PostGIS is used as the Database Management System (DBMS). By customizing the

Business Logic layer, new functionality may be added. Thereby, new encoders and decoders

can be added in a plug and play fashion. For example, prototypical support for an EXI

encoding for SOS messages, O&M as well as SensorML has already been implemented in

the European research project NeXOS
9
.

4.2.4 Geoinformation Enabling Toolkit
The Geoinformation Enabling Toolkit (GET-IT)

10
, formerly known as RITMARE StarterKit, is a

software suite developed to help research data production units to establish their own data

provision servers. It utilizes the 52°North SOS implementation as a data backend and

GeoNode as map data provider. The user can manage, share, visualize and download the

underlying data.

8
 www.52north.org/sos

9
 http://www.nexosproject.eu/

10
 https://github.com/SP7-Ritmare/starterkit

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 19

In addition to the provision of data, GET-IT features a metadata editing tool (see
11

 for

detailed information) which simplifies the creation and management of metadata in order to

fulfil certain criteria (e.g. INSPIRE compliancy).

4.3 Research Projects
The following research projects conduct work in the oceanographic domain and are therefore

relevant for BRIDGES as they represent a large marine community of sensor metadata and

observation data providers, managers, and users.

4.3.1 The Ocean of Tomorrow Projects
In the context of the Seventh Framework Programme (FP7), the European Commission has

launched a series of projects which are summarised under to topic ‘The Ocean of Tomorrow’.

This initiative is focused on bringing researchers from different domains together in order to

develop new solutions for marine and maritime challenges.

Among the different topics addressed by this programme, the projects funded under the topic

“Innovative Multifunctional Sensors” (FP7-OCEAN-2013-2) are particularly relevant to the

work performed within BRIDGES. These projects are described in the following paragraphs

in more detail:

• COMMON SENSE

• NeXOS

• SCHeMA

• SenseOcean

An overview of all Ocean of Tomorrow projects has been published by the EC in a dedicated

book
12

.

4.3.1.1 COMMON	SENSE	
The COMMON SENSE (Cost-effective sensors, interoperable with international existing

ocean observing systems, to meet EU policies requirements) project
13

 aims at developing

innovative and cost-effective sensors. The data collected by these sensors shall be made

available in a standardised, and thus interoperable, manner. The motivation for following this

approach is to facilitate the integration of measured data into larger-scale systems such as

the Global Ocean Observing System (GOOS) and the Global Earth Observing System of

Systems (GEOSS).

In this context, the COMMON SENSE project also envisions a Sensor Web Platform based

on the OGC SWE standard. This platform will rely on SWE both for the transfer of data from

sensors on the platform and also for providing data access to external users.

This approach is fully in-line with the Sensor Web architecture planned for the BRIDGES

project. In order to ensure a harmonised approach it is important to organise an exchange

with partners of the COMMON SENSE project (e.g. for the development of a marine

SensorML profile which can be re-used across multiple projects).

11

 https://media.readthedocs.org/pdf/getit/latest/getit.pdf
12

 http://ec.europa.research/eu/bioeconomy/pdf/ocean-of-tomorrow-2014_en.pdf
13

 http://www.commonsenseproject.eu/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 20

Furthermore, the COMMON SENSE project is considering the 52°North Sensor Web

implementations (i.e. the SOS) for building the Sensor Web Platform. Also planned work of

COMMON SENSE on a sensor registry (potentially based on the 52°North Sensor Instance

Registry) might lead to results that are also of interest for the BRIDGES project.

4.3.1.2 NeXOS	
The NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor

Systems Empowering Marine, Maritime and Fisheries) project
14

 aims at the development of

innovative, integrated multifunctional sensor systems (e.g. optics and passive acoustics) that

can be deployed on mobile and fixed platforms. This is combined with the development of an

interoperable Sensor Web architecture which facilitates the sharing of the collected data

through standardised interfaces, data models and formats.

Within this project an approach is developed to facilitate the data flow from the sensor

hardware into central Sensor Web servers. For this purpose developments are performed on

a level closer to the hardware (e.g. intelligent data loggers, such as those implementing

PUCK, that are able to use OGC SWE protocols for transmitting data) as well as on a Web

server level (e.g. improved OGC Sensor Observation Service implementations to manage

collected sensor data as well as corresponding viewer tools).

Figure 5: NeXOS Sensor Observation Service Viewer

Within BRIDGES it will be possible to build upon the open source developments resulting

from NeXOS in order to build prototypes for testing the BRIDGES Sensor Web

specifications.

Furthermore, NeXOS has contributed to the development of a SensorML 2.0 profile for

marine sensors to which the NeXOS SensorML profile should be aligned. Thus, the

SensorML 2.0 recommendations in this deliverable are also considering the NeXOS

achievements.

14

 http://www.nexosproject.eu/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 21

4.3.1.3 SCHeMA	
The SCHeMA (Integrated In Situ CHemical MApping Probes) project

15
 aims at the

development of marine in-situ sensing technology for detecting anthropogenic and natural

chemical compounds.

Within SCHeMA the sensor developments are complemented by work on a plug-and-play

network to collect and distribute the collected observation data to users via web

technologies
16

. For developing this network, the SCHeMA project will also consider the

previously described SWE standards (including SensorML) as well as further European

regulations such as INSPIRE
17

.

Similarly to the other presented Oceans of Tomorrow projects, SCHeMA is also considered

as a relevant cooperation partner: Exchanging experiences on the use of SWE technology

will help to take sustainable design decisions and to ensure on the other hand a harmonised

approach on the application of Sensor Web technology.

4.3.1.4 SenseOCEAN	
The EU H2020 SenseOCEAN project

18
 aims to create a highly integrated multifunctional and

cost-effective in situ marine biogeochemical sensor system. The system will be modular and

deployable on multiple platforms including autonomous platforms such as gliders and

profiling floats. One of the project’s goals is the implementation of an interoperable data

architecture that will introduce standards from the sensor through to data delivery.

Sensor data and metadata are being modelled using OGC SWE standards SensorML 2.0

and O&M. Because the SWE standards are designed in a domain independent manner, they

were intentionally specified with a high degree of flexibility that enables implementation

across many different domains and usage scenarios. At the same time this flexibility allows

one to achieve similar goals in different ways. Thus, in order to avoid interoperability issues,

partners from several projects have teamed up to develop profiles of the different OGC SWE

standards that can serve as a common basis, through the Marine SWE profiles wiki. This

effort includes the semantic annotation of the standards with controlled vocabularies so that

they become semantically rich and interoperable

Sensor data and metadata are also being published as Linked Data by describing

information with open standards like the Resource Description Framework (RDF) and using

standardized ontologies like Semantic Sensor Network Ontology (SSN-O). To express data

and their metadata in O&M, SSN ontology needed alignment with the Provenance Ontology

(PROV-O) and om-lite (a Web Ontology Language (OWL) representation of O&M 2.0). The

following ontologies were also imported to express additional features of sensor

characteristics:

• the GoodRelations ontology (http://semanticweb.org/wiki/GoodRelations) to describe

manufacturer metadata

15

 http://www.schema-ocean.eu/
16

 http://www.schema-ocean.eu/Docs/Confirmed/SCHeMA%20factsheet%201_vers%20end.pdf
17

 Please note: In a different project context, 52°North is currently working together with the JRC on an

enhancement of the INSPIRE Technical Guidance on Download Services so that the OGC SOS

standards can also be used as an INSPIRE compliant Download Service.
18

 http://www.senseocean.eu/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 22

• the NERC vocabulary server is providing the Uniform Resource Identifiers (URIs) to

parameters and units with information

(https://www.bodc.ac.uk/data/codes_and_formats/vocabulary_search/)

• the PROV-O ontology to describe provenance metadata

(https://www.w3.org/TR/2013/REC-prov-o-20130430/)

• Dublin Core, SKOS(Simple Knowledge Organization System)

• GeoNames Ontology, to add geospatial semantic information

A constraint on full implementation of SWE from the sensor through to the platform and data

delivery is the requirement to install the sensors on legacy platforms which have limited

functionality. The solution to this issue is that each sensor transmits a URI that resolves to

the sensor metadata at the data centre level. Sensor metadata will be available in multiple

formats including SensorML and JSON-LD. An example of the returned SensorML created

with the permission of the manufacturer is shown in Figure 6. The record is for a

commercially available Aanderra Oxygen Optode 4531. This is a commercially available

sensor and not part of the SenseOCEAN project and the record has been created to

demonstrate functionality of the data system (until SenseOCEAN metadata become public

domain).

Figure 6: An example SensorML record from the SenseOCEAN project.

Where possible the data formats for delivery of data will follow the international programmes

applicable to the data e.g. profiling float data with be converted to the Argo format,

submarine glider data to the Everyone’s Gliding Observatories (EGO) format, mooring data

to the OceanSites format. The files will link to the SensorML held in 52N and exposed to the

web via ERRDAP (http://coastwatch.pfeg.noaa.gov/erddap/index.html). The implementation

of ERRDAP and 52°North is shown in Figure 7. This implementation will be fully described in

the SenseOCEAN deliverable due to be completed in March 2016.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 23

Figure 7: Schematic describing the proposed implementation or 52°North and ERRDAP with BODC as part of the
SenseOCEAN project.

The goal of SenseOCEAN is to develop sensor technology from TRL of 3 to 7 i.e. prototype

to pre-production commercial sensor. As such the data collected will be considered immature

in the context of global programmes such as Argo whose data systems are increasingly

moving towards accepting mature, well-understood data with sustainable longer term

resourcing. This is to ensure that limited resources for activities such as data management

are appropriately directed.

The conversion of data to the exchange formats related to each programme (gliders, profiling

floats, fixed moorings, etc.), will demonstrate functionality of sensors in the context of each

platform type. This leaves the potential open for inclusion of the data within the global

programme specific datasets once the sensors reach commercial and operational maturity

with proven quality assured data.

Sensor

DB

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 24

4.3.2 AtlantOS
AtlantOS

19
 is a four year project which commenced in June 2015 and has the overarching

goal:

“To deliver an advanced framework for the development of an integrated Atlantic Ocean
Observing System that goes beyond the state-of–the-art, and leaves a legacy of
sustainability after the life of the project”.

AltantOS will enhance the observation network and bring together data from ship based

observation networks, autonomous observation networks and coastal observation networks.

Gliders form part of both autonomous and coastal networks. The AtlantOS network is

focusing on variables identified by the Ocean Observations Panel for Climate (OOPC),

namely the Essential Climate Variables (ECV) and Essential Ocean Variables (EOV)

(http://ioc-goos-oopc.org/obs/ecv.php).

Work package 7
20

 focuses on data and one its goals is to “Integrate standardised in-situ key

marine observations”. Data will be delivered to their existing global repositories in their

current exchange formats and the OGC SOS standard is being investigated as a method to

aggregate data from data centres contributing to the AtlantOS network.

4.3.3 GROOM
A key project in establishing gliders as a tool for operational and scientific observation of the

ocean was Gliders for Research, Ocean Observation and Management (GROOM)
21

.

The objective of the GROOM project was to design a new European Research Infrastructure

that uses underwater gliders for collecting oceanographic data. The new infrastructure was

designed to be beneficial to a large number of marine activities and societal applications

related to climate change, marine ecosystems, resources, or security that rely on academic

oceanographic research and/or operational oceanography systems.

The GROOM project was a significant step towards an operational underwater glider network

and included the establishment of the Global Data Assembly Centre at Ifremer, France and

the definition of the EGO format for data exchange.

The final report fully documents progress made to an operational underwater glider network

and is available at http://www.groom-

fp7.eu/lib/exe/fetch.php?media=public:deliverables:groom_d1.10_upmc.pdf.

GROOM was a finite project and work to continue the development toward underwater

gliders becoming part of the Global Ocean Observing System (GOOS) continues under the

EGO banner. Despite EGO not being formally funded, projects such as AtlantOS will

enhance the flow of data by continuing the development of the oceanic glider network.

19

 https://www.atlantos-h2020.eu/
20

 https://www.atlantos-h2020.eu/wp7
21

 http://www.groom-fp7.eu/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 25

5 Status Quo and Current Workflow
This section focuses on the current state of glider data acquisition setups. Gliders from

different vendors all implement a specific workflow. Identifying the differences and

commonalities provides the basis for developing an interoperable approach.

The following sections provide details on the data acquisition workflow of Seaglider and

Slocum AUVs. In the final version of this document descriptions of the SEA EXPLORER AUV

will be added.

5.1 Internal data storage patterns, data transmission and recovery
In this section we discuss how currently-available gliders store data internally, with emphasis

on sensor data (scientific and engineering types) but also fixed data like calibration

information or other mission metadata. In addition, some details are provided as to how the

transmission of these data to shore is achieved. Each glider uses a different approach, and

the DEEP and ULTRA-DEEP EXPLORER gliders can take advantage of those early

attempts to provide the most robust product from a data management standpoint during the

design phase.

5.1.1 Seaglider
The Seaglider has one CPU, a Persistor TT8, which runs a special version of Microsoft DOS

(and extended version of picoDOS). This means that there are limitations to the names and

total number of files, besides the normal storage capacity limitation. On this disk are several

types of files: the glider executable file, four specific command/control files, a compass

calibration file, a battery usage tracking file, possibly bathymetry map files, various working

files, and of most interest here: instrument data files. The data files are described here, the

command files in the next section, while the rest are left to Appendix A.

At the conclusion of each dive (defined by a particular cycle of events that occur as

configured by the glider operational “run” software), a set of files is created: log, engineering,

and capture. Ultimately, if transmitted and processed successfully, these will become human-

readable files on the base station on shore with extensions .log, .eng, and .cap. While on the

glider they are stored in files with names such as:

• SGNNNNLZ.A
• SGNNNNDZ.A

• SGNNNNKZ.A

where NNNN is the dive number, “L” means log, “D” means data or engineering, and “K”

means capture. The letter “Z” shows the file is zipped, and “A” means the file is archived.

When data are ready to be transmitted from the Seaglider, each file is first broken into pieces

of 8 kb or less, then renamed so that intermediate files are created. For instance in

'sg0055dz.x' might become “sg0055dz.x00” and “sg0055dz.x01”. These files are then

transmitted to the base station and a copy of them is renamed and saved on the Seaglider. If

transmission was not successful, data is further broken down to smaller pieces and the same

procedure is repeated. Checksums are run on received files and an error is generated if a

failure occurs, alerting the pilot that that particular segment of data must be requested again

from the glider (via a control file).

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 26

The Seaglider data transmission using the Iridium RUDICS system is very efficient. For 1000

m dives, which could take 7-8 hours, all log and eng files are sent and control files

exchanged in a matter of minutes for typical sampling (CTD every 5 sec in upper 600 m, 10

sec below; Oxygen every 30 sec above 600 m only, and Optical triplet every 60 sec in upper

300 m, which is about 100 KB). Therefore, data recovery upon glider collection is rarely

critical: only a few corrupted dives are often needed, as well as capture files for a complete

mission log.

5.1.2 Slocum
The Slocum glider has two Persistors for “flight” and “science”. Both contain a version of

picodos, and a main program, “app”, runs on each Persistor. The flight Persistor talks to the

science Persistor via a software-controlled connection known as the “clothesline”, to extract

science data to be sent over Iridium or FreeWave (radio) to the server. The main mission is

whichever of the available missions that the pilot chooses to run, and variables such as

waypoints, sampling regimes and dive profiles are controlled by shorter mission segment

files.

Both Persistors’ Flash drives have a similar structure with the sub directories:

• App – the main Gliderdos app within which the mission is run

• Bin – the executables of the main program

• Config – data files referenced by the mission and the app, some of which are edited

by the pilot

• Missions – Files ending in .mi for different missions that can be run by the pilot

• Mafiles – mission segments ending in .ma that are regularly edited by the pilot during

a mission

• Logs – Files created by the glider when logging is invoked

• Sentlogs – files that have been successfully transmitted by the glider

• State – long term variable storage

The science Persistor does not have missions or mafiles, but otherwise the structure is the

same.

Both Persistors contain a file in the config directory to determine which variables are

transmitted and what subsampling rate is to be used. This is sbdlist for flight and tbdlist for

science. During a mission, each dive creates a series of files in the LOGS directory on each

Persistor. The naming protocol is a dive number followed by a segment number. If the mission

is stopped by the pilot, the dive number increments and the segment number is reset to zero.

Usually, the ASCII header is only sent in segment 0000 to keep the transmission times down.

The file types for the two Persistors are defined by their file extensions:
Table 1: File types of Persistors

Function Flight
persistor

Science Persistor

Raw binary data .dbd .ebd

short binary data .tbd .sbd

medium binary data .mbd .nbd

log files .mlg .nlg

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 27

The files sbdlist.data and tbdlist.dat determine the short binary data to be sent back to the

server. The full binary data is usually too big to send over Iridium and is extracted when the

glider is recovered. If transmission of a file is interrupted due to loss of communicationss at

the surface, the glider takes up transmission where it left off on the next occasion. The glider

has a maximum time on surface, set by the pilot which can be extended interactively.

The glider communicates using RUDICS over Iridium with the server via a terminal program,

which has a command window for the pilot. A FreeWave radio modem can also be used for

short ranges. Data retrieval and other surface behaviour is normally autonomously controlled

by scripts, but the pilot can manually intervene to retransmit files, transmit files not on the

normal list such as a .mlg log file, dive immediately, abort the mission and restart a new one

and so on.

Sensor sampling is decided by the mission file and controlled by sample .ma files, either one

for all the sensors together or individual ones where sensor sampling differs. Thus the pilot

sets the native sample rate, depth to stop and start at, and profile i.e. diving, climbing,

surface or a combination of all possibilities for each sensor.

5.1.3 SEA EXPLORER
The Sea Explorer glider has two ARM9 computers, one for the vehicle, one for the payload.

Both are running Linux inside and the main programs are called Seaexplorer and

Seapayload. The vehicle and the payload are exchanging information and files through a

RS232 line and a zModem protocol. Both computers are accessible without opening the

glider using Ethernet for data download, file modification or for upgrading the system.

Both ARM9 computer share the same structure:

- root directory contains the main program and the configuration files

o The SeaExplorer or Seapayoad binary file

o sea.cfg = this file describes all the configuration parameters of the glider. This

file is extremely important, and can only be modified with caution.

o sea.msn = this file gives the glider a default configuration for its navigation

behavior

- logs directory contains all data acquired during mission

o seaSSS.M.gli.sub.Y.gz: glider navigation datafiles with information like time,

pitch, roll, ballast pumped…

o seaSSS.M.pldN.dat.Y.gz: complete science datafiles

o seaSSS.M.pldN.sub.Y.gz: decimated science datafiles this file will be sent over

iridium

o sea.0.gli.evt.1 : Navigation log book which records all events during navigation

o sea.Arch.XXXXXXXXXX.tar.gz : every time a mission is started, all previously

described files are stored included in a zip file and stored on the glider to make

sure no information is lost.

- sbin directory contain all additional softwares

Name Description

SSS = vehicle identification number [ex 007, 013, 104]

M = mission number [ex 1, 34 , 943]

Y = Yo number [ex 1, 23, 843]

XXXXXXXXXX= random numbers

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 28

N = Payload number [1 or 2]

5.2 Data Management (Quality Assurance)
The following sections provide details on the data quality management workflow of Seaglider,

Slocum and SEA EXPLORER AUVs.

5.2.1 Seaglider
When the above files are received, re-assembled and processed by the python routines on

the base station, new files appear with a letter 'p” plus integers 'MMM' for the glider serial

number and 'NNNN' for the dive number in front of their various file name extensions. The

following human-readable files are the result of a successful communication session:

Data File (.dat): This is an ASCII text file which is transmitted to the base station for further

processing (e.g. p1500055.dat for dive 55 of glider SG150). It contains the raw sensor data

and each file covers one dive cycle. This file is made as compact as possible and therefore

difficult to read directly by the user. However, the numbers can be interpreted using the

column titles line in the header of this file. An example of the first few lines of a data file can

be seen in Appendix A.

Log File (.log): This file serves as a summary of what happened during the previous dive

(e.g. p1500055.log). It contains the software version, the glider number, the mission number,

the dive number, the time that the dive was started, a complete list of parameters and their

values (some of them diagnostic like battery voltage and consumption), and some summary

information about the dive. An example is in Appendix A.

Capture File (.cap): This file contains detailed information about all the actions the Seaglider

performed in the previous dive and is used for debugging (e.g. p1500055.cap). This file can

become quite large and is usually not transmitted, except for the first few dives or when

triggered by a serious error or pilot request. These are occasions when it is recommended to

monitor the performance of the Seaglider closely. An example is in Appendix A.

The base station then generates the following more usable files using the above fundamental

data files:

ASCII Files (.asc): These files are the reconstituted (uncompressed, reassembled and

deferentially summed) versions of the .dat files created by the Seaglider (e.g.

p1500055.asc).

Engineering File (.eng): In this file the data present in .asc file is restated but converted into

engineering units. Along with the p*.log files, these comprise the fundamental data files (e.g.

p1500055.eng)

netCDF Files (.nc): This file captures all processed files and is self-documenting. The

NetCDF files are meant primarily for sharing data between scientific users. There are three

versions:

• An up to present mission trajectory file at full resolution (variables are functions of

x,y,z,t, and dive)

• An up to present mission vertically-binned trajectory file

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 29

• An individual dive file, which contains detailed information on the QC performed by

the base station, as well as all entries from .log and .eng files, and a special file on

the base station for calibration information (sg_calib_constants.m-see below).

Communication File (comm.log): This is a complete record of the Seaglider's

communication with the base station. It is appended with a GPS string immediately upon

successful connection, followed by the send/receive dialog.

BaseLog (baselog_YYMMDDHHMMSS): Contains a record of what happens when the

base station processes the raw data files into the end data products. The set of python

scripts resides on the base station and file manipulation and reprocessing are triggered as

soon as the glider logs out of its account.

A few tools are available from Kongsberg Underwater Technology Inc. for analysing dive

data, based on Matlab. Other groups have developed similar tools, like the SOCIB toolbox at

https://github.com/socib/glider_toolbox.

5.2.2 Slocum
Once uploaded to the server, the .tbd and .sbd files are renamed with the glider name, year,

day number, dive number and segment by the server. So for a glider called unit_400 the file

name would be unit_400-yyyy-ddd-m-s.dbd etc. where m is the dive number and s is the

segment number. The day number has leading zeroes but mission and segment number do

not. The longer files, .mlg, .dbd and .ebd are copied manually from the glider’s flash card to

once it has been removed from the glider.

Teledyne have tools to translate the binary files into ASCII, from where it can be imported

into environments such as Matlab. Numerous tools to manipulate the data have been

developed, in the absence of any from Teledyne, such as the SOCIB toolbox at

https://github.com/socib/glider_toolbox.

There are also log files on the server, generated from the surface dialogue between the

glider terminal and the glider on each Iridium or FreeWave contact.

5.2.3 SEA EXPLORER
All log files are zipped in*.gz format in order to be sent as binary file during iridium

transmissions. Inside the zip files, the format used is csv, every file include the header and

the list of data using semi-colon as separator.

The files can be automatically or manually downloaded using Iris land software. The file are

stored in the SeaExplorer repository with sub directories per glider and per mission

- SeaExplorer repository

o /Glider1

§ Mission1

§ Mission2

§ …

o /Glider 2

§ Mission 1

Onto the iris software

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 30

- all communication logs with glider are saved in a log file.

- All communication logs are analysed and stores on a CSV file with all relevant

information from all yo of the mission

- A kml file is generated at each surfacing with the first and last surface position.

The SeaExplorer data manipulation is included in the SOCIB toolbox at

https://github.com/socib/glider_toolbox.

5.3 Mission planning
Mission planning is not part of the standard preparation for commercial gliders. Each

operator has their own technique or preferred method to plan the glider sampling. Basic

information about the environment and logistics must be considered in relation to the

scientific goals, but no manufacturer tools are available beyond basic self-test tools. These

pre-launch tests run the glider through a series of sub-system tests to ensure all components

are ready for operation. Many organizations have developed checklists for pre-deployment

preparation (GROOM D5.3).

5.4 Control
This section introduces the current approach how gliders are controlled and tasked. The aim

of this information is to provide a foundation to derive the requirements for glider control

within the BRIDGES Sensor Web infrastructure.

5.4.1 Seaglider
There are four control files that a pilot can edit and leave in the glider home directory to be

picked up and replace the versions residing on the glider. The Seaglider downloads the

control files, if present, every time it calls the base station. If not present, the copy on the

glider is re-used. The command file (cmdfile) is used to modify values of different parameters

during the mission. Commands are in capital letters and preceded by $. One of the three

directives ($QUIT, $RESUME, $GO) is in the last line of this file. An example from the

beginning of a mission is presented below. During a mission, this file could be a single line

containing $GO.

$C_VBD,2900
$C_PITCH,2788
$C_ROLL_DIVE,2151
$C_ROLL_CLIMB,2050
$D_TGT,45
$T_DIVE,15
$T_MISSION,25
$D_SURF,2
$D_ABORT,60
$SM_CC,690
$MAX_BUOY,150
$NAV_MODE,2
$ALTIM_PING_DEPTH,0
$T_RSLEEP,3
$QUIT

Science File provides instructions for how often the sensors are sampled.

/depth time sample gcint
200 20 100 300

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 31

1000 60 100 300

Targets File provides flight path when navigating by waypoints.

UPPER_RIGHT3 lat=3437.83 lon=3305.748 radius=1000 goto=UPPER_RIGHT3
VM_UPPER_RIGHT0 lat=3435.50 lon=3307.0 radius=3852 goto=UPPER_RIGHT3

PicoDOS Command Batch File (pdoscmds.bat) contains a list of the commands used only

by the glider to do low-level operations, such as re-send a file or change the target.

Every time a glider connects to its account, an archived copy of the cmdfile, targets file, or

science file is saved on the base station and renamed to include the dive number. PDOS

command files are also saved, but already include the dive number, so they are saved with a

serial number. If there are multiple calls on one surfacing, a cmdfile is sent each time, and a

serial number is added after the dive number. This allows (in theory) for the reconstruction of

pilot command history, although in practice it is difficult because it is not certain if the control

file was successfully received, or was just partially sent and the connection lost. Additionally,

output of the picoDOS system is returned to the base station in a special .pdos file, which

confirms the result of the commands sent.

5.4.2 Slocum
There are several files to control the vehicle during a mission that are user-editable.

.mi Mission file. This is the main control file that defines the behaviours the glider executes

either intrinsically or via a shorter behaviour file. This file will be set up by the pilot, starting

from a stock file (stock.mi) or a previously used mission file. All the dive parameters that a

pilot will change during a mission are held in the shorter files that can be uploaded without

interrupting the mission. Files are referenced by a number that is read after the behaviour

reference. So file sample10.ma would be referenced by the number 10 in “behaviour:

sample” in the main mission file.

.ma mission segment file. There are 4 of these: the yo file that controls the diving parameters,

sample files that control the sensors, the goto file that controls the waypoints and route and

the surface file that controls behaviour on the surface.

yoxx.ma. Yo file xx, at the head of the file are a number of sensor values that are set for the

dive:

sensor: f_max_working_depth 200 # Initial state of glider set to 200m
sensor: u_alt_min_depth(m) 5 # Set depth altimeter comes on at.
sensor: c_alt_time -1 # set number seconds pings apart.
 # <0 = off
sensor: u_min_altimeter(m) 12
sensor: u_max_altimeter(m) 100.0 # the maximum range of the altimeter
sensor: u_max_water_depth_lifetime(yos) 1.0

Below this are the arguments that control the dive profile i.e. how many dives before

surfacing, depth to dive to and to climb to before inflecting, how much ballast to pump and

what pitch to set the glider to and how to do it. Where autoballast is being used, a maximum

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 32

and minimum vertical velocity is also set. If the thruster is in use, this is controlled from the yo

file as well.

<start:b_arg>
 b_arg: start_when(enum) 2 # pitch idle (see doco below)
 b_arg: num_half_cycles_to_do(nodim) 2 # Number of dive/climbs to
 # perform
 # <0 is infinite, i.e. never
 # finishes
 # arguments for dive_to
 b_arg: d_target_depth(m) 30
 b_arg: d_target_altitude(m) 25
 b_arg: d_use_bpump(enum) 0 # 0 Autoballast/Speed control.
 b_arg: d_bpump_value(X) 400.0 # use_bpump == 0 Total amt of
 # ballast, stored as
 # C_AUTOBALLAST_VOLUME

 b_arg: d_use_pitch(enum) 3 # 1:battpos 2:setonce 3:servo
 # in rad rad, <0 dive
 b_arg: d_pitch_value(X) -0.4528 # -26 deg
 b_arg: d_speed_min(m/s) 0.05 # minimum depth rate for dive
 b_arg: d_speed_max(m/s) 0.2 # arguments for climb_to
 b_arg: c_target_depth(m) 4
 b_arg: c_target_altitude(m) -1
 b_arg: c_use_bpump(enum) 0 # 0 Autoballast/Speed control.
 b_arg: c_use_pitch(enum) 3 # 1:battpos 2:setonce 3:servo
 # in rad rad, >0 climb
 b_arg: c_pitch_value(X) 0.4538 # 26 deg
 b_arg: c_speed_min(m/s) -0.05 # minimum depth rate for climb
 b_arg: c_speed_max(m/s) -0.2
 b_arg: end_action(enum) 2 # 0-quit, 2 resume
<end:b_arg>

Samplexx.ma. This is referenced by the number xx in the sample:behaviour file. By

convention, if all sensors are used in the same regime, sample10.ma controls them all. If

different sensors are controlled differently, these use sensor 11, 12, 13 etc.

<start:b_arg>
 b_arg: sensor_type(enum) 0 #All sensors
 b_arg: state_to_sample(enum) 5 # 0 none
 # 1 diving
 # 4 climbing
 # 5 diving|climbing
 b_arg: intersample_time(s) 0 # if < 0 then off, if = 0 then
 # as fast as possible, and if
 # > 0 then that many seconds
 # between measurements
 b_arg: nth_yo_to_sample(nodim) 1 # Check masterdata
 b_arg: intersample_depth(m) -1 # Check masterdata
 b_arg: min_depth(m) -5 # Check masterdata
 b_arg: max_depth(m) 2000 # Check masterdata
<end:b_arg>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 33

The above example from sample10 uses 0 to switch on all sensors in the argument

sensor_type. There are up to 60 sensor types that are selected in the case of individual

sensors. State_to_sample is self-explanatory, as is intersample_time. Nth yo to sample

counts from each surfacing, so this should not exceed num_half_cycles (in the yo file)

divided by 2.

goto_lxx.ma. The goto file referenced by xx in the goto_list behaviour. There are a number

of variables that are set in the file, followed by the waypoints.

<start:b_arg>
 b_arg: start_when(enum) 0
 b_arg: list_stop_when(enum) 007
 b_arg: initial_wpt(enum) -1
 b_arg: num_legs_to_run(nodim) -1
 b_arg: num_waypoints(nodim) 2
 b_arg: list_when_wpt_dist(m) 1000 # used if list_stop_when == 7
<end:b_arg>
<start:waypoints>
 -837.250 4924.132 # comment
 -837.250 4925.260
<end:waypoints>

The most important when altering the file is num_waypoints which must be set manually and

must be correct.

num_legs_to_run is explicit, or -1 for repeat forever.

initial_wpt -1 is the next one on the list, -2 is the nearest waypoint, or any positive number N

is the Nth one on the list.

list_when_wpt_dist is the range to waypoint that the glider goes onto the next.

The format for the waypoints is in degrees and decimal minutes, longitude followed by

latitude, negative numbers for south and for west, leading zeroes on degrees are optional

i.e.:(DD)DMM.mmm.

surfacexx.ma. behaviour of the glider on the surface referenced by xx in the surface

behaviour. The only variable the pilot ever has to change is

b_arg: when_secs(sec) 1800 # Surface every 0.5 hrs for no comms

This is set to exceed the expected time under the surface.

5.4.3 SEA EXPLORER
In order to change the glider behavior, the pilot will send commands to the glider during

surfacing. The user can also program at any time Iris and Waypoint module softwares to send

commands when the glider will surface.

As a general rule, a command:

- starts with ‘$’ and ends with ‘;’

- includes an argument

- is necessarily followed by <cr><lf>

- a command will be acknowledged by the vehicle “>cmd:”

-

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 34

- example: ‘$alt=20;’ the glider is requested to do come back at surface if seabed is

mesuared at less than 20 meters

The list of available commands are in the table below:

Table 2: SEA EXPLORER control commands

command Argument Note
alt [5;50] Altitude in meters (-1 to turn it off)

bd [-500 ;-100] Set descent external volume in milliliter relative to neutral position

bs [1;500] set absolute volume of surface ballast

bu [100;500] Set ascent external volume in milliliter relative to neutral position

cbk [1;360] hang up iridium and call back in n minutes

clr [0,262144] Alarm code to clear

dst {0|1}
to hide or print the output of the seadst nmea sentence (will be automaticly

disable on next yo)

flr {0|1} To turn OFF or ON the flasher

go N/A make the glider dive (No argument for this command)

halt {0|1} let the glider at surface. Halt must be set up back to 0 before sending a go;

heading [0;360] Heading set point in degrees

hpid [0] Reset heading regulator, 0 is the only accepted value

log {0|1}
to hide or print the output of the sealog nmea sentence (will be automaticly

disable on next yo)

msk [0,262144]
create alarm mask to aknowledge warnings, user has to enter alarm code

reported in the $seamrs alarm field

pb [1;100] linear absolute position for base setting

pd [0 ;20] Set descent linear offset in mm relative to neutral position (pu<pd)

pld [0|1] Turn off|on payload power

ps [1;100] set linear absolute position when glider at surface

pu [-20;0] Set ascent linear offset in mm relative to neutral position (pu<pd)

radio [0|1] To turn off|on radio permanently (will not be reset on next surfacing)

reboot N/A Fully resart and initialize control a command system (use with CAUTIOUS!!!)

sendDataFile [1;99999] ask the glider to send the specific science file

sendNavFile [1;99999] ask the glider to send the specific navigation file

sr [0;5] set surfacing rate, this allow multi-yos

ym [0;1000] set maximum number of yo before surfacing in halt mode

zb [zt;700] set profile bottom inflection depth in meters

zt [0;zb] set profile top inflection depth in meters during multiyos

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 35

6 Requirements
This chapter briefly summarizes the requirements for the design of the BRIDGES Sensor

Web Architecture. It is structured into different functional as well as non-functional aspects

which lead to a first set of design considerations.

Attention is drawn to the fact that further updates of these requirements will be expected

throughout the duration of the project. These additional requirements will be addressed by

the final version of this document.

6.1 Data Flows
An important aspect concerns the data flows needed for publishing the collected

observations. Especially the following aspects need to be covered by the BRIDGES Sensor

Web Architecture:

• Flexible data publication mechanism: An approach is needed on how collected

observation data can be uploaded to a data repository from where it can be made

accessible to users.

• Automatic extraction of relevant meta-information from NetCDF: Many of the collected

observation data sets are available as NetCDF files. Thus, metadata for data

publication should, as much as possible, be extracted from the NetCDF files (please

note: this is rather an implementation requirement than a requirement that influences

the Sensor Web architecture.

• Re-use of sensor type descriptions: In order to make the publication of metadata

more efficient, it should be avoided that metadata which are the same for every

sensor of a specific type need to be repeatedly entered by operators. Instead, sensor

type descriptions should be re-used.

• Provision of quality information about observations (e.g. quality flags)

• Guidance on required metadata: Glider operators shall receive guidance which

metadata elements need to be provided in order to support the interpretation and

discovery of a glider, its instruments and the data sets it generates.

• Use of vocabularies: Wherever possible, identifiers and terms should be referenced

as vocabulary entries in order to increase semantic interoperability.

6.2 Security
The developed architecture shall follow the idea of open specifications and standards in

order to ensure security. While non-public specifications may lead to security by obscurity, it

is not sustainable to follow such an approach. For example, open standards ensure a

broader review of specifications so that potential security issues are more likely identified in

advance. Furthermore, operators of the glider get a clearer view of the deployed architecture

and the involved components so that they are able to replace certain components if security

issues are discovered in certain implementations.

6.3 Access Control
Not all data collected by gliders might be intended for public use. Furthermore, plans that

shall be carried out by gliders may only be submitted by an authorised researcher. In other

cases, some data sets may only be published after quality assurance was carried out. Thus,

the following aspects of access control were identified:

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 36

• Data access: Only authorised users shall be able to access certain data sets or even

individual observations; access criteria comprise of spatial constrains, temporal

constrains, instruments, gliders, observed properties, and quality flags

• Data publication: Data may be uploaded to Sensor Web servers only by authorised

users

• Tasking: Only authorised users shall be able to submit tasking requests to a glider

platform.

6.4 Data Operations
With regards to data operations and functionalities that need to be provided by the BRIDGES

Sensor Web infrastructure, the following requirements were identified:

• Publication: A mechanism is needed to publish data collected by gliders. Thus, an

upload interface is needed which allows two main functionalities:

o Upload of observation data

o Upload of metadata about observation data as well as the gliders and

instruments which have generated these data sets

This publication interface might be used by glider operators to upload collected data

or by scientists after validation or processing of data. In the future, also a direct

upload from gliders through this interface might become relevant.

• Discovery: The Sensor Web infrastructure shall support the discovery of observation

data sets as well as gliders and their instruments

• Retrieval: A download interface is needed that allows users (e.g. scientists) to retrieve

the collected observation data sets as well as the corresponding metadata. This

interface shall provide several query filters such as:

o Spatial extend

o Temporal extend

o Glider

o Instrument

o Observed property

o Quality flags

6.5 Interoperability
The BRIDGES Sensor Web architecture shall ensure interoperability with other observation

data and geospatial information infrastructures. Thus, it shall not comprise isolated

specifications but instead it shall re-use existing standards. Important reasons for this

requirement are:

• Re-use existing knowledge and experiences

• Conformance with approaches used in other systems and initiatives (e.g. INSPIRE,

GEOSS)

• Possibility to re-use existing implementations of the relevant standards

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 37

7 Approach
The following sections describe the approach developed to design a service architecture for

glider data based on international standards and well-established data formats such as the

OGC SWE service suite and NetCDF. An overview of relevant parameters, their metadata

and how to encode these is provided.

7.1 Identification of Glider Parameters
A service architecture that focuses on the discovery and provision of glider data requires a

strong focus on the metadata of glider platforms, missions, as well as features of interest.

This section illustrates the metadata required by a data analyst which need to be exposed by

the system.

7.1.1 Calibration

7.1.1.1 Seaglider	
All of the Seaglider's sensors, except for the compass, arrive calibrated at the fabrication

centre from the sensor manufacturer. The compass is calibrated for the local magnetic

conditions with the all of the sensors and batteries in-place and the compass calibration file is

stored on the Seaglider. Calibration coefficients and metadata for sensors and for the glider

as well as very basic mission characteristics are stored in a human-readable file called

sg_calib_constants.m, which is stored in the glider home directory on the base station

(example in appendix B). It is used by visualization tools in scripts, as well as dive analysis

routines. It has also been used to customize quality control procedures carried out by the

base station (spike test parameters, global max/min values, etc.). It is noted that not all of

this information resides on the glider. Calibration coefficients and basic mission

characteristics are stored as parameters stored in each .log file (written in memory at launch

time in a special file). Serial numbers of sensors and detailed mission data are not stored

internally. Also important to note is the fact that the sg_calib_constants.m file is not

permanently tied to a set of data files or glider, and can easily be overwritten or lost when

new missions or new gliders are used.

7.1.1.2 Slocum	
As with the Seaglider, only the compass is calibrated by the user on the Slocum. Sensor

calibration data for PUCK-capable sensors (e.g. WetLabs PUCK) is stored on the glider,

usually within the autoexec.mi file, but otherwise the science data is stored raw and

calibrations are applied when the data is uploaded to the data centre.

7.1.1.3 SEA	EXPLORER	
Only the compass is calibrated by the user. All scientific sensor calibration will be stored in

the science bay or in the sensor itself. This will allow the user to change easily payload

without moving calibration parameters. Alseamar is engaged in the program FP7 NeXOS so

the SeaExplorer will be able to handle SensorML files.

7.1.2 Measured Parameters
All observation parameters of a glider platform are defined in the NetCDF EGO file as data

variables. As this file is self-describing, it is very straight-forward to extract these. Based on

many existing EGO files, a common set of data variables has been identified. The following

table provides an overview (please note: whenever possible a reference to corresponding

dictionary entries shall be given; the table below contain vocabulary URIs for the different

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 38

parameters; for UoM, vocabulary URIs should also be provided in the final version of this

document, as available):

Table 3: Overview of a few common Data Variables

Parameter UoM Vocabulary URI Comment

sea_water_pressure Pa
http://vocab.nerc.ac.uk/collection/P01/curre

nt/PPSSPS01/

sea_water_temperature deg
http://vocab.nerc.ac.uk/collection/P01/curre

nt/TEMPPR01/

sea_water_electrical_conductivity S/m
http://vocab.nerc.ac.uk/collection/P01/curre

nt/CNDCZZ01/

sea_water_practical_salinity [psu]
http://vocab.nerc.ac.uk/collection/P01/curre

nt/PSALCU01/

provided as

Practical

Salinity Unit

The navigational parameter parts of an EGO file are defined by the following variables:

Table 4: Overview of Navigation Parameters

Parameter UoM Vocabulary URI Comment

latitude_gps deg
http://vocab.nerc.ac.uk/collection/P01/

current/ALATGP01/

WGS84

Coordination

Reference

System

longitude_gps deg
http://vocab.nerc.ac.uk/collection/P01/

current/ALONGP01/

WGS84

Coordination

Reference

System

vehicle_depth m
http://vocab.nerc.ac.uk/collection/P09/

current/DEPH/

depth from

surface

distance_to_sea_floor m
http://vocab.nerc.ac.uk/collection/P01/

current/AHSFZZ01/

water_depth m

total depth of

the water

column

pitch deg
http://vocab.nerc.ac.uk/collection/P01/

current/PTCHEI01/

roll deg
http://vocab.nerc.ac.uk/collection/P01/

current/ROLLEI01/

heading deg
http://vocab.nerc.ac.uk/collection/P01/

current/HEADCM01/

speed m/s
http://vocab.nerc.ac.uk/collection/P01/

current/APSAZZ01/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 39

7.2 Parameter Mapping
This section provides an overview on the requirements of parameter mappings resulting from

the existing approaches. A special focus is given to the possibility to enable discovery of

glider data by defining default and required parameters and their definition using Observation

& Measurements as well as SensorML.

7.2.1 Glider Data Model for Observations & Measurements
Figure 8 illustrates the general structure of an O&M 2.0 OM_Observation document for

usage with glider data. Different aspects that are required for O&M are covered that leverage

the discovery of O&M glider data (i.e. a user is able to search for glider data using the

different concepts):

Phenomenon Time

This property defines the time frame in which the mission took place. It shall cover the first

and last time of measurements.

Figure 8: Structure of an OM_Observation document for glider data.

Result Time

In contrary to the Phenomenon Time, the Result Time shall define the time when the data set

was created and inserted into data storage (e.g. the time of recovery for delayed mode, or

time of transmission to the DAC for near real time).

Procedure

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 40

The procedure shall link to a unique identifier of the glider instance. The value shall be the

same for every mission one glider has conducted.

Observed Property

The observed property shall define the phenomena the glider measured. As a glider does not

only measure one property (e.g. sea water salinity) it shall link to composite property (e.g. the

science bay) that is itself defined as a SensorML document, thus providing all required

information for discovery and analysis.

For the Observed Property we recommend the use of a vocabulary server (i.e. the server

operated by NERC
22

). The URI pointing to the corresponding vocabulary entries shall be

used as Observable Property identifiers.

Feature of Interest

This property defines the spatial area covered by the mission. It shall link to an entry of an

established vocabulary (e.g. the BODC vocabulary
23

). Thus a user can search for missions

conducted for a certain area (e.g. the Celtic Sea).

Result

The result contains the actual measurements created during the mission. The different

possibilities for structuring the result component are described in section 8.2.1.3.

7.2.2 NetCDF
The NetCDF EGO format (Carval et al., 2013) is the established data format for glider data.

This section describes how the EGO data model can be aligned with best practices for O&M

2.0 design.

7.2.2.1 Comparison	with	Observation	&	Measurements	
To allow storage and provision through OGC SWE services, it is crucial that all parameters

required to operate these services are available within the NetCDF EGO format. This section

analyses the EGO format and links the existing parameters to O&M 2.0, thus providing

guidance on how to establish the connection between the two.

Phenomenon Time

The phenomenon time can directly be derived from the timestamps stored in the NetCDF file.

The first and last timestamps shall be considered as the beginning and end of the time

period.

Result Time

The EGO NetCDF does not contain information on the creation date itself. A software

solution shall take care of setting a reasonable time (e.g. the time when the data was

analysed or imported).

Procedure

22

 http://vocab.nerc.ac.uk/
23

 http://www.bodc.ac.uk/data/codes_and_formats/vocabulary_search/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 41

As the procedure shall be a unique identifier for the glider, an approach to define it is to

derive the procedure from NetCDF parameters such as GLIDER_OWNER and

GLIDER_SERIAL_ID, e.g. of the following form:

• http://glider-instance.bridges-h2020.eu/<GLIDER_OWNER>_<GLIDER_SERIAL_ID>

An exemplary instance would be:

• http://www.bridges-h2020.eu/gliders/NERC_NOC/400

Observed Property

The observed property shall be derived from the procedure. If a glider system stores science

and navigation data separately, it shall provide an observed property for each (and also

make it available as two separated O&M documents):

• http://www.bridges-

h2020.eu/gliders/<GLIDER_OWNER>_<GLIDER_SERIAL_ID>/science

• http://www.bridges-

h2020.eu/gliders/<GLIDER_OWNER>_<GLIDER_SERIAL_ID>/navigation

If both are stored in the same NetCDF file, one overall procedure shall be used:

• http://www.bridges-

h2020.eu/gliders/<GLIDER_OWNER>_<GLIDER_SERIAL_ID>/sensors

Feature of Interest

NetCDF EGO files do not explicitly define the area of a certain mission. A software solution

provides a mechanism to set the area of interest either manually or (semi-) automatically

(e.g. via spatial reasoning using the captured coordinates). It shall link to an entry in an

established vocabulary, e.g.:

• http://vocab.nerc.ac.uk/collection/C16/current/21a/

Data Quality

Data quality is an important factor for glider data. O&M as well as SensorML provide ways to

define the quality of a data set. Devaraju et al. (2015) defines an approach on how to encode

quality. NetCDF EGO files are stored as different revisions. The quality checked revision

follows a generic approach to define data quality that can be mapped to the O&M model.

For each quality checked parameter an additional parameter flag is introduced. For example:

• TEMP à TEMP_QC

The value of the flag can be one of the following:

• 0 = No quality check performed (no_qc_performed)

• 1 = Good data quality (good_data)

• 2 = Probably goo data quality (probably_good_data)

• 3 = Bad data quality, but probabilities to correct these

(bad_data_that_are_potentially_correctable)

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 42

• 4 = Bad data quality (bad_data)

• 5 = Adjusted value, e.g. due to inconsistencies (value_changed)

• 8 = Interpolated value (interpolated_value)

• 9 = No data, missing value (missing_value)

Listing 1 illustrates how quality information shall be mapped to O&M files. Following this

approach, a software solution can easily show quality information without the need to

analyse a NetCDF file. For data sets, quality information should be provided on a meta level,

i.e. indicating if quality checks have been performed or not. A value-based approach would

only work for inline XML data.

Listing 1: O&M quality encoding of glider data.

<?xml version="1.0" encoding="UTF-8"?>
<om:OM_Observation gml:id="glider-0123"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <om:phenomenonTime>...</om:phenomenonTime>
 <om:resultTime>...</om:resultTime>
 <om:procedure xlink:href="http://static-namespace.gliders.eu/glider-0123"/>
 <om:observedProperty xlink:href="http://static-namespace.gliders.eu/glider-
 0123/science"/>
 <om:featureOfInterest xlink:href="http://static-namespace.gliders.eu/north-
 sea-123"/>
 <!-- Quality information -->
 <om:resultQuality>
 <swe:Text>
 <gml:name>QualityDescriptor</gml:name>
 <swe:value>QC</swe:value>
 </swe:Text>
 </om:resultQuality>
 <om:result>...</om:result>
</om:OM_Observation>

For discovery patterns it is sufficient to provide quality information on data set level

granularity. A similar approach has been conducted by previous work in this area (e.g.

Devaraju et al., 2015). Different quality levels could be:

• NONE: no quality assessment has been performed

• QC: quality checks have been performed

• ADJUSTED: quality checks have been performed and data was adjusted in post-

processing

Please note: These quality levels are subject to further discussion so that an update for the

final version of this document can be expected.

7.2.3 SensorML
The OGC SensorML 2.0 standard offers a powerful approach to encode a broad range of

different metadata about systems (e.g. gliders) and components of such systems (e.g.

instruments). Thus, it is ideally suited as a metadata format within BRIDGES. The following

two subsections introduce a proposed SensorML model as well as a mapping of certain

elements of the EGO NetCDF model to corresponding SensorML elements.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 43

For indicating Observed Property (Inputs) and Classifiers within a SensorML document we

recommend the usage of a vocabulary server (i.e. the server operated by NERC
24

).

7.2.3.1 SensorML	Model	
The following diagrams illustrate how SensorML can be used to describe gliders (types and

instances) as well as instruments connected to these gliders (types and instance). If required

it is even possible to add a third layer of metadata to also describe the detectors of an

instrument (see Figure 9).

It is important to note that SensorML can be used to describe on the one hand types of

gliders, instruments and detectors and on the other hand also specific instances. While the

type description contain only those metadata which are common to all objects of the same

type (e.g. the manufacturer name), the instance descriptions contain only those elements

which are specific for a certain object (e.g. the serial number). This avoids redundancies in

metadata management and ensures a more efficient provision of metadata.

Figure 9: Layers of Proposed SensorML Model

Figure 10 shows the different elements of a description of a glider type. For example it

contains references to documentation and to the manufacturer and general characteristics of

the glider type.

24

 http://vocab.nerc.ac.uk/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 44

Figure 10: Elements of Glider Type Descriptions

A glider instance (see Figure 11) complements the glider type description with instance

specific metadata. This comprises metadata such as individual identifiers, a history of the

glider operation (e.g. deployment and maintenance events), configuration parameters, a list

of attached instruments, and a reference to the operator.

Figure 11: Element of Glider Instance Descriptions

Figure 12 shows a model for the metadata of an instrument type (a detector type description

would follow the same approach). The main differences are the description of outputs which

contains a list of the observed properties and their units of measurements as well as different

information in the capabilities section which are related to the measurement capabilities of

the instrument.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 45

Figure 12: Elements of Instrument Type Descriptions

Finally, Figure 13 shows the structure of an instrument (or detector) instance description. In

comparison to the previous examples, it contains an additional element to refer to the glider

to which the instrument is attached, a description of the instrument on the glider, as well as a

history showing for example calibration events.

Figure 13: Elements of Instrument Instance Descriptions

7.2.3.2 Mappings	of	NetCDF	Attributes	to	SensorML	
From a NetCDF file several metadata elements can be extracted to generate a SensorML

description of an instrument or glider. This section shows, based on the EGO profile of

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 46

NetCDF, which attributes could be extracted from a NetCDF file to fill specific SensorML

fields.

Table 5: Mapping of EGO NetCDF field to SensorML elements

EGO NetCDF Profile Field SensorML 2.0 Section

TRANS_SYSTEM_ID Glider Instance à Characteristics

TRANS_FREQUENCY Glider Instance à Characteristics

POSITIONING_SYSTEM Glider Instance à Characteristics

PLATFORM_FAMILY Glider Type à Classification

PLATFORM_TYPE Glider Type à Classification

PLATFORM_MAKER Glider Type à Identification

FIRMWARE_VERSION_NAVIGATION Glider Instance à Characteristics

FIRMWARE_VERSION_SCIENCE Glider Instance à Characteristics

MANUAL_VERSION Glider Instance à Characteristics

GLIDER_SERIAL_NO Glider Instance à Identification

STANDARD_FORMAT_ID Glider Type à Characteristics

DAC_FORMAT_ID Glider Type à Classification

WMO_INST_TYPE Glider Type à Classification

PROJECT_NAME Glider Instance à Keywords

DATA_CENTRE Glider Instance à Characteristics

PI_NAME Glider Instance à Contacts

ANOMALY Glider Instance à History

BATTERY_TYPE Glider Instance à Characteristics

BATTERY_PACKS Glider Instance à Characteristics

SPECIAL_FEATURES Glider Instance à Characteristics

GLIDER_OWNER Glider Instance à Contacts

OPERATING_INSTITUTION Glider Instance à Contacts

CUSTOMIZATION Glider Instance à Characteristics

DEPLOYMENT_START_DATE Glider Instance à History

DEPLOYMENT_START_LATITUDE Glider Instance à History

DEPLOYMENT_START_LONGITUDE Glider Instance à History

DEPLOYMENT_START_QC Glider Instance à History

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 47

DEPLOYMENT_PLATFORM Glider Instance à History

DEPLOYMENT_CRUISE_ID Glider Instance à History

DEPLOYMENT_REFERENCE_STATION_ID Glider Instance à History

DEPLOYMENT_END_DATE Glider Instance à History

DEPLOYMENT_END_LATITUDE Glider Instance à History

DEPLOYMENT_END_LONGITUDE Glider Instance à History

DEPLOYMENT_END_QC Glider Instance à History

DEPLOYMENT_END_STATUS Glider Instance à History

DEPLOYMENT_OPERATOR Glider Instance à History

SENSOR Glider Instance à Components

SENSOR_MAKER Instrument Type à Identification

SENSOR_MODEL Instrument Type à Identification

SENSOR_SERIAL_NO Instrument Instance à Identification

SENSOR_PARAMETERS Instrument Type à Outputs

PARAMETER Instrument Type à Outputs

PARAMETER_UNITS Instrument Type à Outputs

PARAMETER_ACCURACY Instrument Type à Capabilities

PARAMETER_RESOLUTION Instrument Type à Capabilities

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 48

8 System Design
Currently, software for managing glider data focusses on extracting and storing observations

in the NetCDF EGO format at recovery time. No real-time data is transferred, nor are chunks

of data for a missions provided in near real-time (e.g. each time the glider surfaces after a

dive). This section provides a system design using OGC SWE standards that builds upon

this setup, making it applicable in today’s real world glider applications. In the future, a more

sophisticated approach with further integration and usage of OGC SWE standards is

desirable.

8.1 Component Architecture
Figure 14 illustrates how the system design extends existing solutions at a high level. The

mission and recovery phases form the basis for the extension. The storage and provision

phase covers the integration of OGC SWE standards, i.e. SOS, O&M and SensorML.

Figure 14: System Architecture Design.

The light-blue shaded area on the top of the illustration marks the contribution of this

document. It highlights the fact that the proposed interoperability architecture can be placed

on top of existing solutions. An implementation of the architecture should use the EGO

NetCDF files to semi-automatically derive required meta-information such as the observed

properties and the covered area of interest for a certain mission. A user of this architecture

should be able to use the SOS instance as the single entry point to find and get desired

information and data. Note that in the case the EGO NetCDF files are delivered in near real

time, this system can also operate in near real time.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 49

8.2 Glider Data Management
This sections describes the workflows for managing metadata and data of a glider system.

O&M 2.0 and SensorML 2.0 are used to define interoperable encodings.

8.2.1 Sensor Data Workflow
The current de-facto standard data format for gliders is NetCDF, in particular the NetCDF

EGO profile. The designed architecture makes the re-use of NetCDF EGO the central

approach by wrapping NetCDF EGO in the machine- and human-readable O&M 2.0 model

(see section 7.2.1). The following sections define the technical solution for this approach in

combination with the Sensor Observation Service.

8.2.1.1 Sensor	Observation	Service	Profile	
In order to facilitate interoperability among SOS instances for Glider data, a service profile is

required. This section defines the profile and provides some exemplary responses for

common requests

Figure 15 shows the SOS interface methods of the Glider profile.

• GetCapabilities – this method is the main entry point to an OGC Web Services. A

response provides metadata on the services capabilities and its contents. An

implementing service shall provide all glider datasets via separate observation

offerings. An example of a GetCapabilities response is provided in “Appendix C –

SOS Profile – GetCapabilities Response”.

Figure 15: SOS interface methods of the glider data profile.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 50

• DescribeSensor – this method shall return a SensorML 2.0 document as defined in

section 7.2.3. The input to this method is the procedure ID of a glider instance or a

type

• GetObservation – a client can use this method to access the observations provided

by an observation offering (= a glider mission)

• GetFeatureOfInterest – this method shall return (a reference to) the desired feature

of interest (= the area covered by a certain glider mission).

An SOS implementing the Glider profile shall serve the data in the data format

 http://www.bridges-h2020.eu/sos/om-netcdf-ego/1.0

and propagate this format in the Contents section of the Capabilities document (see

“Appendix C – SOS Profile – GetCapabilities Response” for an example). The structure of

this format is defined in section 8.2.1.3 of this document.

8.2.1.2 Eventing	
Eventing can be understood as (near) real-time dissemination of sensor data based on

specific rules and patterns. Such rules range from very simple filters (e.g. data from a

specific glider) to complex event patterns (e.g. threshold overshoot patterns). In the OGC

SWE context eventing mechanisms can be integrated using the OGC PubSub 1.0
25

 service

specification. This specification defines an extension to existing OGC web services or a

standalone web service that is used to implement the Publish/Subscribe paradigm
26

. An

interested user can use a filter language such as XPath, OGC Filter Encoding to define the

set of desired data.

Not all current gliders provide their measurements in real time in EGO NetCDF. Thus

eventing for glider software architecture should focus on data availability. A user could be

informed whenever a new dataset on specific observed properties or an area of interest is

available. It is possible, that if near real time EGO files are transmitted, eventing could be

configured to inform users when a data set is updated.

At the moment, the OGC PubSub specification is a rather new standard which has just been

adopted. To better assess the suitability of this standard, 52°North is currently participating to

the OGC Testbed-12 which will bring further findings and experiences how this standard

could be applied within BRIDGES.

The upcoming revision of this document will cover an architecture approach for such

eventing patterns based on the currently ongoing OGC activities.

8.2.1.3 NetCDF	Integration	
Current established glider platforms and related systems store the captured data in the

NetCDF EGO format. In order to reach acceptance and support, the desired system will

consider this fact and build additional patterns around the NetCDF EGO storage de-facto

standard.

OGC Observations & Measurements 2.0 are the ideal solutions for re-using NetCDF EGO

and enriching it by providing metadata in a standardized fashion. Similar approaches have

25

 http://www.opengeospatial.org/projects/groups/pubsubswg
26

 https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 51

been proposed by certain INSPIRE Data Specifications (INSPIRE Cross Thematic Working

Group on Observations & Measurements, 2014). The usage of O&M leverages the search

and discovery patterns established by the use of OGC Catalogue Service for the Web (CSW)

and OGC SOS.

The following parts describe general O&M encoding patterns, highlight the issues that occur

when applying these to glider data as well as the approach to overcome these issues.

Listing 2 illustrates a common O&M encoding using a data structure analogue to the NetCDF

EGO structure. In this Listing, the science bay parts of a glider mission are represented. The

Phenomenon Time describes the time window when the actual measurements took place,

whereas the Result Time is the time when the data has been processed and stored (e.g. at

the recovery phase). The elements Procedure, ObservedProperty and FeatureOfInterest link

to corresponding entities as described in section 7.2.

The relevant part for captured data is represented by the Result element. It contains the

measured values as a time series, encoded following the definition provided in the Encoding

element.

Listing 2: Observation for science data with inline encoded data values.

<?xml version="1.0" encoding="UTF-8"?>
<om:OM_Observation gml:id="glider-0123"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <om:phenomenonTime>
 <gml:TimePeriod gml:id="phenomenonTime-glider-0123">
 <gml:beginPosition>2016-01-01T00:22:00</gml:beginPosition>
 <gml:endPosition>2016-01-01T12:33:00</gml:endPosition>
 </gml:TimePeriod>
 </om:phenomenonTime>
 <om:resultTime>
 <gml:TimeInstant gml:id="resultTime-glider-0123">
 <gml:timePosition>2016-01-01T12:45:00</gml:timePosition>
 </gml:TimeInstant>
 </om:resultTime>
 <om:procedure xlink:href="http://www.bridges-h2020.eu/gliders/vendorA/0123" />
 <om:observedProperty xlink:href="http://www.bridges-
 h2020.eu/gliders/vendorA/0123/science" />
 <om:featureOfInterest xlink:href="http://vocab.nerc.ac.uk/collection/
 C16/current/21a/"/>
 <om:result>
 <swe:DataArray>
 <swe:elementCount>
 <swe:Count>
 <swe:value>2</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="Components">
 <swe:DataRecord>
 <swe:field name="time">
 <swe:Quantity>
 <swe:label>TIME</swe:label>
 <swe:uom code="s" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_pressure" xlink:href="http://vocab.
 nerc.ac.uk/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 52

 collection/
 P01/current/
 PPSBPR01/">
 <swe:Quantity>
 <swe:label>PRES</swe:label>
 <swe:uom code="Pa" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_temperature" xlink:href="http://vocab.
 nerc.ac.uk/
 collection/
 P02/current/
 TEMP/">
 <swe:Quantity>
 <swe:label>TEMP</swe:label>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_electrical_conductivity" xlink:href="
 http://vocab.
 nerc.ac.uk/
 collection/
 P02/current/
 CNDC/">
 <swe:Quantity>
 <swe:label>CNDC</swe:label>
 <!--// Siemens per meter //-->
 <swe:uom code="S/m" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_practical_salinity" xlink:href="http://
 vocab.nerc.ac.uk/
 collection/
 P02/current/PSAL/">
 <swe:Quantity>
 <swe:label>PSAL</swe:label>
 <!--// practical salinity units //-->
 <swe:uom code="[psu]" />
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding decimalSeparator="."
 tokenSeparator=","
 blockSeparator="@@" />
 </swe:encoding>
 <swe:values>
 1451607733,56.22,2.3332,4.801,13@@
 1451607738,56.43,2.3236,4.768,13@@
 </swe:values>
 </swe:DataArray>
 </om:result>
</om:OM_Observation>

Listing 3 is very similar to the previous one, but in comparison provides the navigational parts

of the glider mission. Still, the structures follows the same encoding principle.

Listing 3: Observation for navigation data with inline encoded data values.

<?xml version="1.0" encoding="UTF-8"?>
<om:OM_Observation gml:id="glider-0123"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 53

 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <om:phenomenonTime>
 <gml:TimePeriod gml:id="phenomenonTime-glider-0123">
 <gml:beginPosition>2016-01-01T00:22:00</gml:beginPosition>
 <gml:endPosition>2016-01-01T12:33:00</gml:endPosition>
 </gml:TimePeriod>
 </om:phenomenonTime>
 <om:resultTime>
 <gml:TimeInstant gml:id="resultTime-glider-0123">
 <gml:timePosition>2016-01-01T12:45:00</gml:timePosition>
 </gml:TimeInstant>
 </om:resultTime>
 <om:procedure xlink:href="http://www.bridges-h2020.eu/gliders/vendorA/0123" />
 <om:observedProperty xlink:href="http://www.bridges-h2020.eu/gliders/vendorA/
 0123/navigation" />
 <!--// link to well-known vocabulary; instance here: celtic sea //-->
 <om:featureOfInterest xlink:href="http://vocab.nerc.ac.uk/collection/C16/
 current/21a/" />
 <om:result>
 <swe:DataArray>
 <swe:elementCount>
 <swe:Count>
 <swe:value>2</swe:value>
 </swe:Count>
 </swe:elementCount>
 <swe:elementType name="components">
 <swe:DataRecord>
 <swe:field name="time">
 <swe:Quantity>
 <swe:uom code="s" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="dead_reckoning_position">
 <swe:Vector definition="http://www.opengis.net/def/property/
 OGC/0/PlatformLocation"
 referenceFrame="http://www.opengis.net/def/crs/
 EPSG/0/4326">
 <swe:coordinate name="latitude">
 <swe:Quantity definition="http://dictionary.tbd#Latitude"
 axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="longitude">
 <swe:Quantity definition="http://dictionary.tbd#
 Longitude"
 axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="gps_position">
 <swe:Vector definition="http://www.opengis.net/def/property/
 OGC/0/PlatformLocation"
 referenceFrame="http://www.opengis.net/def/crs/
 EPSG /0/4326">
 <swe:coordinate name="latitude_gps">
 <swe:Quantity definition="http://dictionary.tbd#Latitude"
 axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="longitude_gps">

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 54

 <swe:Quantity definition="http://dictionary.tbd
 #Longitude"
 axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="vehicle_depth">
 <swe:Quantity>
 <swe:uom code="m" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="distance_to_sea_floor">
 <swe:Quantity>
 <swe:uom code="m" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="water_depth">
 <swe:Quantity>
 <swe:uom code="m" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="pitch">
 <swe:Quantity>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="roll">
 <swe:Quantity>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="heading">
 <swe:Quantity>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="speed">
 <swe:Quantity>
 <swe:uom code="m/s" />
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:TextEncoding decimalSeparator="."
 tokenSeparator=","
 blockSeparator="@@" />
 </swe:encoding>
 <swe:values>
 1451607720,54.9301168,0.2598505,55.0152449,-0.0203009,2455,122,
 2om:r577,185.23,275.11,23.0,1.3@@1451607725,54.9341233,0.2581123,
 55.0152449,-0.0203009,2465,112,2577,183.12,276.34,22.56,1.233
 </swe:values>
 </swe:DataArray>
 </om:result>
</om:OM_Observation>

Most of the established software components that are able to process glider EGO data do

not have support for the encoding style presented above. In order to benefit from existing

software solutions and still provide the interoperable discovery and inter-linking mechanisms,

a combination of both NetCDF and O&M is the most suitable solution.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 55

The following Listings provide examples on how to encode an OM_Observation document

which links to an external NetCDF EGO file via the “values” element. Listing 4 illustrates the

science bay parts.

Listing 4: Out-of-band observation for science data, referring to an external NetCDF file.

<?xml version="1.0" encoding="UTF-8"?>
<om:OM_Observation gml:id="glider-0123"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <om:phenomenonTime>
 <gml:TimePeriod gml:id="phenomenonTime-glider-0123">
 <gml:beginPosition>2016-01-01T00:22:00</gml:beginPosition>
 <gml:endPosition>2016-01-01T12:33:00</gml:endPosition>
 </gml:TimePeriod>
 </om:phenomenonTime>
 <om:resultTime>
 <gml:TimeInstant gml:id="resultTime-glider-0123">
 <gml:timePosition>2016-01-01T12:45:00</gml:timePosition>
 </gml:TimeInstant>
 </om:resultTime>
 <om:procedure xlink:href="http://www.bridges-h2020.eu/gliders/vendorA/0123" />
 <om:observedProperty xlink:href="http://www.bridges-h2020.eu/gliders/vendorA/
 0123/science" />
 <om:featureOfInterest xlink:href="http://vocab.nerc.ac.uk/collection/C16/
 current/21a/" />
 <om:result>
 <swe:DataStream>
 <swe:elementType name="Components">
 <swe:DataRecord>
 <swe:field name="time">
 <swe:Quantity>
 <swe:label>TIME</swe:label>
 <swe:uom code="s" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_pressure"
xlink:href="http://vocab.nerc.
 ac.uk/collection/P01/current/
 PPSBPR01/">
 <swe:Quantity>
 <swe:label>PRES</swe:label>
 <swe:uom code="Pa" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_temperature" xlink:href="http://vocab.
 nerc.ac.uk/collection/
 P02/current/TEMP/">
 <swe:Quantity>
 <swe:label>TEMP</swe:label>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_electrical_conductivity" xlink:href="
 http://vocab.
 nerc.ac.uk/
 collection/
 P02/current/
 CNDC/">
 <swe:Quantity>
 <swe:label>CNDC</swe:label>
 <!--// Siemens per meter //-->
 <swe:uom code="S/m" />

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 56

 </swe:Quantity>
 </swe:field>
 <swe:field name="sea_water_practical_salinity" xlink:href="http://
 vocab.nerc.ac.uk/
 collection/P02/
 current/PSAL/">
 <swe:Quantity>
 <swe:label>PSAL</swe:label>
 <!--// practical salinity units //-->
 <swe:uom code="[psu]" />
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:BinaryEncoding byteEncoding="raw" byteOrder="bigEndian">
 <swe:member>
 <swe:Component ref="application/x-netcdf"
 dataType="http://www.unidata.ucar.edu/software/
 netcdf/"/>
 </swe:member>
 </swe:BinaryEncoding>
 </swe:encoding>
 <swe:values xlink:href="http://www.ifremer.fr/co/ego/ego/v2/hannon/
 hannon_20150908/hannon_mooset00_32_R.nc"/>
 </swe:DataStream>
 </om:result>
</om:OM_Observation>

Listing 5 provides the navigational content. Again, the structure is very similar to the science

bay parts, and the EGO NetCDF file is linked via the “values” element.

Listing 5: Out-of-band observation for navigation data, referring to an external NetCDF file.

<?xml version="1.0" encoding="UTF-8"?>
<om:OM_Observation gml:id="glider-0123"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <om:phenomenonTime>
 <gml:TimePeriod gml:id="phenomenonTime-glider-0123">
 <gml:beginPosition>2016-01-01T00:22:00</gml:beginPosition>
 <gml:endPosition>2016-01-01T12:33:00</gml:endPosition>
 </gml:TimePeriod>
 </om:phenomenonTime>
 <om:resultTime>
 <gml:TimeInstant gml:id="resultTime-glider-0123">
 <gml:timePosition>2016-01-01T12:45:00</gml:timePosition>
 </gml:TimeInstant>
 </om:resultTime>
 <om:procedure xlink:href="http://www.bridges-h2020.eu/gliders/vendorA/0123"/>
 <om:observedProperty xlink:href="http://www.bridges-h2020.eu/gliders/vendorA/
 0123/navigation"/>
 <!--// link to well-known vocabulary; instance here: celtic sea //-->
 <om:FeatureOfInterest xlink:href="http://vocab.nerc.ac.uk/collection/
 C16/current/21a/"/>
 <om:result>
 <swe:DataStream>
 <swe:elementType name="components">
 <swe:DataRecord>
 <swe:field name="time">
 <swe:Quantity>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 57

 <swe:uom code="s" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="dead_reckoning_position">
 <swe:Vector definition="http://www.opengis.net/def/property/
 OGC/0/PlatformLocation"
 referenceFrame="http://www.opengis.net/def/crs/
 EPSG/0/4326">
 <swe:coordinate name="latitude">
 <swe:Quantity definition="http://dictionary.tbd#Latitude"
 axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="longitude">
 <swe:Quantity definition="http://dictionary.tbd
 #Longitude"
 axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="gps_position">
 <swe:Vector definition="http://www.opengis.net/def/property/
 OGC/0/PlatformLocation"
 referenceFrame="http://www.opengis.net
 /def/crs/EPSG/0/4326">
 <swe:coordinate name="latitude_gps">
 <swe:Quantity definition="http://dictionary.tbd#Latitude"
 axisID="Lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="longitude_gps">
 <swe:Quantity definition="http://dictionary.tbd
 #Longitude"
 axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:field>
 <swe:field name="vehicle_depth">
 <swe:Quantity>
 <swe:uom code="m" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="distance_to_sea_floor">
 <swe:Quantity>
 <swe:uom code="m" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="water_depth">
 <swe:Quantity>
 <swe:uom code="m" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="pitch">
 <swe:Quantity>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="roll">
 <swe:Quantity>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 58

 <swe:field name="heading">
 <swe:Quantity>
 <swe:uom code="deg" />
 </swe:Quantity>
 </swe:field>
 <swe:field name="speed">
 <swe:Quantity>
 <swe:uom code="m/s" />
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:elementType>
 <swe:encoding>
 <swe:BinaryEncoding byteEncoding="raw" byteOrder="bigEndian">
 <swe:member>
 <swe:Component ref="application/x-netcdf"
 dataType="http://www.unidata.ucar.edu/software/
 netcdf/"/>
 </swe:member>
 </swe:BinaryEncoding>
 </swe:encoding>
 <swe:values xlink:href="http://www.ifremer.fr/co/ego/ego/v2/hannon/
 hannon_20150908/hannon_mooset00_32_R.nc"/>
 </swe:DataStream>
 </om:result>
</om:OM_Observation>

The main difference between the first and second two Listings are the Encoding and Values

elements. The Encoding elements defines a raw byte encoding and related meta information:

• The Endianness is defined in the byteOrder attribute. This should always be

bigEndian as this is the common value for NetCDF files.

• The ref attribute of the Component element defines the MIME type that shall be used:

application/x-netcdf
• The datatype attribute of the Component element defines the general type of the

data, e.g. a reference to a vocabulary. For NetCDF the value

http://www.unidata.ucar.edu/software/netcdf/ shall be used.

The Values element shall only contain one attribute, xlink:href. This is the link where a user

or software can obtain the actual NetCDF EGO file.

This approach allows the reuse of existing NetCDF files and also enables the provision of

glider data via OGC services such as SOS 2.0 implementations.

The parameters used in the swe:DataRecord element all refer to an entry in a vocabulary. In

order to establish interoperability among O&M instances, the following entries shall be used,

for example:

• sea_water_pressure:

http://vocab.nerc.ac.uk/collection/P01/current/PPSBPR01/
• sea_water_temperature:

http://vocab.nerc.ac.uk/collection/P02/current/TEMP/

• sea_water_electrical_conductivity:

http://vocab.nerc.ac.uk/collection/P02/current/CNDC/

• sea_water_practical_salinity:

http://vocab.nerc.ac.uk/collection/P02/current/PSAL/

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 59

• latitude: http://vocab.nerc.ac.uk/collection/P01/current/ALATZZ01/

• longitude: http://vocab.nerc.ac.uk/collection/P01/current/ALONZZ01/

8.2.2 Metadata Workflow
With regard to metadata workflows the SOS interface described in section 8.2.1.1 provides

already the necessary functionality.

If a glider is deployed or if data collected by a glider (or an instrument on a glider) shall be

published, it is first necessary to publish the metadata of the glider/instrument. For this

purpose the InsertSensor operation of the SOS 2.0 interface shall be used. The input

parameter of this operation is a SensorML document as described in section 7.2.3. Similarly,

it may become necessary to update the metadata of a glider or instrument (e.g. if a

calibration was performed). In this case the SOS UpdateSensor operation shall be used (in

this case the updated SensorML document needs to be provided as input parameter).

For retrieving the metadata of a glider or instrument, the SOS DescribeSensor operation

shall be used. This operation requires the identifier of the glider or instrument as input

parameter and returns the corresponding SensorML document. As future versions of EGO

NetCDF grow to include a richer vocabulary of parameters (in particular metadata and

navigational parameters which may not have standard names yet), this workflow will still

provide the necessary functionality.

8.3 Glider Tasking
This section provides an interoperable approach for glider tasking, or piloting, using the OGC

Sensor Planning Service (SPS) standard.

The OGC SPS provides a comprehensive interface for controlling and tasking sensors. This

does not only comprise the submission of certain tasks (e.g. tracks that shall be followed) but

also functionality for managing tasks and for checking if a certain task is feasible (e.g. if the

glider is not blocked by another task).

From the operations described in the SPS standard, the following operations were identified

as required elements of the BRIDGES SPS profile:

• GetCapabilities: Access to a description of the SPS server, including an overview of

supported operations, available sensors, and supported tasks.

• DescribeTasking: Access to detailed descriptions of individual tasks and the required

parameters.

• Submit: Submission of requests (included task parameters) to execute a certain task.

• GetStatus: Check the execution status of a previously submitted task.

• GetTask: Retrieve a complete description of a previously submitted tasks (including

all submitted parameters).

• DescribeResultAccess: As the SPS offers only an interface submitting tasks and not

for retrieving the resulting observations, this operation allows to query which server

(e.g. SOS server) provides access to the collected data.

• DescribeSensor: Access to the detailed metadata about a certain sensor that can be

tasked through the SPS server.

• GetFeasibility: Checking if a task with certain parameters can be executed (e.g.

availability of the sensor, technical feasibility of the requested task

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 60

• Update: Updating the parameters of a previously submitted task (may not be

supported by all platforms or in all situations)

• Cancel: Cancelling the execution of a specific task (may not be supported by all

platforms or in all situations)

Besides these mandatory operations, SPS servers may also support two additional

operations for enabling the reservation of tasks (e.g. blocking a glider for a certain tasks with

a later confirmation if it shall be executed).

During the remainder of the BRIDGES projects, this profile will be further refined and

improved. While the set of operations that shall be supported will remain constant, the main

goal will be to provide more detailed guidance how certain types of tasks may be handled

through a SPS server. Based on further interactions with operators and glider manufacturers,

the aim is to develop a profile (including vocabulary extensions) how certain tasks and their

parameters may be encoded. Ultimately, this profile will allow the glider pilots to be “platform

free” in their thinking and command execution, as fleets of gliders, possibly of different make,

can be tasked simultaneously with a standard interface.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 61

9 Implementation Patterns
This section provides a discussion, on which level the different components of the presented

Sensor Web architecture will be deployed and how they may be distributed.

Figure 16: Overview of the components covered by the Sensor Web architecture

The green boxes in Figure 16 show the gliders and the instruments they are carrying. On the

gliders software is running which ensures the functioning of the gliders and manages, among

other functionalities, the collection of the data. From the gliders the collected data needs to

be transferred to one or more servers for persisting and publishing the collected data on the

Web. This link between the Gliders and the Sensor Web servers, may be achieved either by

file transfer (e.g. transferring NetCDF files after recovery or in near real time from their base

stations) or in the future by direct satellite communication links.

The Sensor Web components covered by this deliverable are marked with blue colour in

Figure 16. On the one hand there needs to be a data archive consisting of an observation

database and a SOS server providing interoperable access to the content of this archive. On

the other hand this may be complemented by SPS or eventing server which provide

additional functionality (command transmission and event notification). Furthermore, this

document specifies also a SensorML profile for providing metadata about gliders, their

instruments and the collected data sets). These metadata records can be used for creating

registries/catalogues which allow a client to discover available data sets but also gliders and

instruments that are/were used.

Based on the Sensor Web components, it is possible to build user applications (marked

yellow). These components can rely on catalogues/registries for discovering the resources of

interest and subsequently use SOS, SPS, and Event Services to download observation data,

request certain observation tasks, or to subscribe to notifications if certain measurements

become available.

During the remainder of the BRIDGES project, the content of this section will be further

refined. While this version of the document provides a general overview of the architecture,

the final version will provide more detailed guidance on typical implementation patterns (e.g.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 62

how to load data from a glider into the SOS server) based on prototypical experiments. In

addition, the possible role of existing user applications, such as the French GFCP (Glider

Fleet Control Panel) or the SOCIB glider toolbox, will be described.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 63

10 Conclusion
Within this document the current state of glider data acquisition and management has been

documented. Based on this status quo an architecture for interoperable data discovery and

access has been developed. Here, the focus was laid on well-established international

standards such as the OGC Sensor Web Enablement standards suite.

The compatibility with existing solutions played an important role in the development of the

architecture. The approach reuses established workflows and data formats such as the EGO

NetCDF profile to maximize the probability for adoption. Analysing existing glider solutions

and the corresponding requirements also supports this approach.

The result of this work is an interoperable architecture. An application encoding for

Observation & Measurements 2.0 has been developed that supports the reuse of existing

NetCDF infrastructures. In order to provide detailed information on specific glider systems a

SensorML 2.0 profile has been developed in collaboration with related oceanographic

research projects. This profile allows the definition of metadata such as calibration

parameters and quality descriptors for gliders and their deployed sensors. A dedicated profile

for the Sensor Observation Service 2.0 allows users and clients to discover glider datasets

using a standardised interface.

In the upcoming revision of this document an approach for managing glider missions (e.g.

using the OGC Sensor Planning Service 2.0) will be considered. In addition, feedback

received will be gathered and incorporated in order to make the system design more

applicable.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 64

11 Future Work
The proposed interoperability architecture developed and described within this document will

be circulated and discussed within relevant communities during the remainder of the

BRIDGES project timeline. Especially the following groups will be targeted:

• Scientists, e.g.:

o What are typical tools and applications that need to access the Sensor Web

infrastructure?

o Is the content of the proposed SensorML metadata profile sufficient or are

further metadata elements needed?

o Is further functionality required?

o Discuss the integration and enhancements of vocabularies

• Developers, e.g.:

o Which further guidance is needed to implement the proposed Sensor Web

components?

o Are there further requirements which should be considered when refining the

Sensor Web architecture?

o Which (open source) building blocks could help to facilitate the implementation

of server or client components?

• Glider operators, e.g.:

o Is there additional functionality which should be considered?

o What are further requirements on glider tasking/control for which the tasking

specification in this document should provide more details?

• Glider manufacturers, e.g.:

o Are there further aspects which should be considered in the Sensor Web

architecture?

o How could the transfer of data between the glider and the Sensor Web

servers be further facilitated?

The upcoming revision of this document will feature recommendations and updates based on

the feedback and discussions received from the community.

Besides the updates based on the feedback received, the work until the final version of this

document should consider the following topics:

• Patterns for automatic data integration: This shall provide further guidance how the

transfer of data between the gliders (e.g. during the recovery phase) can be

achieved.

• Establishment of vocabularies for glider parameters within the community: For this

purpose existing vocabularies will be analysed and recommendations on potential

enhancements will be provided.

• Real-time dissemination of glider data using interoperable architectures: This

concerns especially push based data distribution so that data consumers receive new

observation as soon as they are available (e.g. OGC PubSub 1.0 compliant services)

• Glider planning architectures: In this first revision of the document the focus was put

on managing and distributing observation data. The tasking of gliders and the SPS

was also addressed but with a lower level of detail. As the collection of requirements

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 65

for this functionality is a continuous process, a more detailed specification will be

provided in the final version.

• Access control: As the standardisation of access control mechanisms for OGC

service interfaces is still a very dynamic process, the decision was taken to consider

this functionality for the final version of this document.

• Prototypical testing in order to validate selected elements of the presented Sensor

Web architecture.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 66

12 Recommendations
To gain as much benefit as possible from the efforts spent on designing the architecture

described in this document, a set of recommendations has been captured. A next step

should be to discuss these recommendations with the BRIDGES project partners (e.g. during

a General Assembly or a dedicated workshop) and possibly a larger audience such as the

EGO network.

The following topics have been described within this documented in detail. For the matter of

convenience, a short summary is provided:

• Alignment between research projects – In order to ensure a harmonised approach

it is important to organise an exchange with partners of the related projects (e.g.

COMMON SENSE, NeXOS, SCHeMA). Besides establishing a common Sensor Web

Enablement architecture, such an alignment could focus on the development of a

marine SensorML profile which can be re-used across these projects. The inter-

project work has already started, the intermediary results have been presented at the

Oceanology Internal 2016 Conference
27

 and the EGU General Assembly 2016
28

.

During the coming month, the partners will focus on finalizing the SensorML work and

establish best practice solutions.

• Establish open source software – within BRIDGES it will be possible to build upon

the open source developments resulting from NeXOS in order to build prototypes for

testing the BRIDGES Sensor Web specifications. In order to create a robust set of

software and tools, the availability of open source components should be

communicated and promoted (both within BRIDGES – e.g. for WP4, 5 and 6 – and

externally).

• Develop NetCDF integration best practice – An implementation of the proposed

SWE architecture should use the EGO NetCDF files to semi-automatically derive

required meta-information such as the observed properties and the covered area of

interest for a certain mission. A user of this architecture should be able to use the

SOS instance as the single entry point to find and get desired information and data. A

best practice paper will be developed that helps partners and data providers to

understand and implement the described concepts. The contents of this paper will be

presented at the next BRIDGES General Assembly.

• Encourage the usage of PUCK-capable sensors – for BRIDGES, PUCK is relevant

for facilitating the link between instruments and Gliders, providing a harmonized

access to metadata and data, but not for the communication between Gliders and

stations on the shore. In particular, WP5 and WP6 shall consider using PUCK-

capable sensors whenever possible.

27

 OI 2016 - Workshop Sensor Web Enablement (SWE):

http://www.oceanologyinternational.com/Whats-On/Associated-Events/Workshop-Sensor-Web-

Enablement-SWE/
28

 EGU GA 2016, ESSI1.1 Session: http://presentations.copernicus.org/EGU2016-

14690_presentation.pdf

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 67

Appendix A – File Contents Examples (Seaglider)
The following files are stored on Seaglider:

Bathymetry Map Files: This files provide the Seaglider with geographic environmental

information. Seaglider can carry up to 999 bathymetry maps.

Battery File: This file is used to keep track of the power consumption.

Pitch_motor 1193.670
Roll_motor 3216.083
VBD_pump_during_apogee 264191.594
VBD_pump_during_surface 2941.014
VBD_valve 0.000
Iridium_during_init 2273.357
Iridium_during_connect 3526.789

Compass Cabilration File: Created when the compass is calibrated in factory or when new

batteries or sensors are added.

"tcm2mat.150, Sparton SP3003D, sn 165, cal 20-July-10"
-0.0231 -0.7585 1.8698 0.0061
-0.0127 0.9539 0.0654 -0.0050
 0.9697 -0.0009 -0.0120 -0.0046 1.0472 -0.0163 0.0165 0.0233
1.0427 27.8139 5.9382 -33.9168

The following files are created and stored on the base station:

Data File (.dat): This is an ASCII text file which is transmitted to the base station for further

processing. It contains the raw sensor data and each file covers one dive of information. This

file is made as compact as possible and therefore difficult to read directly by the user.

However, the numbers can be interpreted using the column titles line in the header of this

file. An example of the first few lines of a data file can be seen below:

version: 66.11
glider: 150
mission: 11
dive: 168
start: 8 1 115 10 25 39
columns:
rec,elaps_tms,depth,heading,pitch,roll,AD_pitch,AD_roll,AD_vbd,GC_pha
se,mag.x,mag.y,mag.z,sbect.TempFreq,sbect.CondFreq,sbe43.O2Freq,wlbb2
f.redCount,wlbb2f.blueCount,wlbb2f.fluorCount$
data:
0 23586 185 2963 -661 10 440 1933 1096 2 419 268 35 175899 127035
271671 72 74 51 543
1 10010 9 -118 11 40 0 -1 249 0 -22 23 40 539 -13 N N N N N
1 9986 -3 -89 -25 0 0 0 248 0 -15 12 23 -404 2 N N N N N
1 9996 37 43 1 -52 0 0 238 0 8 -9 6 -76 -6 N N N N N
1 10011 64 102 -23 -19 0 1 249 0 19 -13 -53 -137 29 N N N N N
1 10003 48 101 7 -35 0 -1 278 0 14 -14 -28 1061 62 N N N N N
1 13576 116 8 -28 43 367 1 156 -1 6 -11 -33 799 472 278486 78 75 55
543….

Log File (.log): This file serves as a summary of what happened during the previous dive. It

contains the software version, the glider number, the mission number, the dive number, the

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 68

time that the dive was started, a complete list of parameters and their values, and some

summary information about the dive. An example:

version: 66.11
glider: 150
mission: 11
dive: 168
start: 8 1 115 10 25 39
data:
$ID,150
$MISSION,11
$DIVE,168
$N_DIVES,0
$D_SURF,2
$D_FLARE,3
$D_TGT,990
….

$MEM,227036
$DATA_FILE_SIZE,143266,2714
$CAP_FILE_SIZE,336428,0
$CFSIZE,260165632,103530496
$ERRORS,0,1,0,0,0,0,0,0,0,0,0,0,111,0,0,0
$GPS,010815,180653,3326.589,3200.869,38,1.6,39,3.5

Capture File (.cap): This file contains detailed information about all the actions the Seaglider

performed in the previous dive and is used for debugging. This file can become quiet large

and is usually not transmitted, except for the first few dives, where it's recommended to

monitor the performance of the Seaglider closely. An example:

12204.920,SSYS,N,uploading complete capture due to CAPUPLOAD
Compressing THISDIVE.KAP to sg0059kz.x...
12227.604,SSYS,N,Capture file opened
Compressing THISDIVE.DAT to sg0059dz.x...
Compressing THISDIVE.LOG to sg0059lz.x...
12254.633,HCF8,N,file 'sg0059dz.x00' opened...
12257.033,HCF8,N,file 'sg0059dz.x00' has 8192 bytes, closed...
12258.648,HCF8,N,file 'sg0059dz.x01' opened...
….
12301.273,HBATT,N,24V batt pack voltage = 24.57V
12301.411,HBATT,N,10V batt pack voltage = 10.91V
12301.661,SDIVE,N,Measuring depth & angle for 1 sec... done.
12305.524,SDIVE,N,Measured depth: 1.80m angle: -63.13deg
12305.868,SGLMALLOC,N,glheap_walk: 228300 bytes free, 17 blocks free,
129308 bytes alloc, 16 blocks alloc
12306.000,SSURF,N,Trying call 0...
12306.047,SSURF,N,Calling phone number: 12062217301
12308.184,HPHONE,N,initializing PSTN connection
12339.062,HPHONE,N,Phone registered
….

The base station then generates the following files using data provided by the Seaglider:

ASCII Files (.asc): These files are the reconstituted (uncompressed, reassembled and

deferentially summed) versions of the Data Files created by the Seaglider. An example:

version: 66.11
glider: 150
mission: 11

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 69

dive: 168
basestation_version: 2.8
start: 08 01 115 10 25 39
columns:
rec,elaps_tms,depth,heading,pitch,roll,AD_pitch,AD_roll,AD_vbd,GC_pha
se,mag.x,mag.y,mag.z,sbect.TempFreq,sbect.CondFreq,sbe43.O2Freq,wlbb2
f.redCount,wlbb2f.blueCount,wlbb2f.fluorCount$
data:
0 23586 185 2963 -661 10 440 1933 1096 2 419 268 35 175899 127035
271671 72 74 51 543
1 33596 194 2845 -650 50 440 1932 1345 2 397 291 75 176438 127022
NaN NaN NaN NaN NaN
2 43582 191 2756 -675 50 440 1932 1593 2 382 303 98 176034 127024
NaN NaN NaN NaN NaN
3 53578 228 2799 -674 -2 440 1932 1831 2 390 294 104 175958 127018
NaN NaN NaN NaN NaN
4 63589 292 2901 -697 -21 440 1933 2080 2 409 281 51 175821 127047
NaN NaN NaN NaN NaN
5 73592 340 3002 -690 -56 440 1932 2358 2 423 267 23 176882 127109
NaN NaN NaN NaN NaN
6 87168 456 3010 -718 -13 807 1933 2514 1 429 256 -10 177681 127581
278486 78 75 55 543
….

The following are base station log files:

Communication File (comm.log): This is a complete record of the Seaglider's

communication with the base station.

Connected at Tue Jul 7 00:06:31 PDT 2015
logged in
1:1:2:0:11:25:-2:435:1880:1130:-55.70:1.12:11.01:24.75:9.51:39.68
GPS,070715,070253,3457.302,3400.156,7,1.7,7,3.8
EOP_CODE=CONTROL_FINISHED_OK
RECOV_CODE=QUIT_COMMAND
ver=66.11,rev=3836M,frag=8,launch=070715:053649
Iridium bars: 3 geolocation: 3443.491211,3359.635498,020508,203003
Tue Jul 7 00:06:44 2015 [sg150] Sending 143 bytes of cmdfile
Tue Jul 7 00:06:44 2015 [sg150] Sent 143 bytes of cmdfile
1:1:2:0:11:25:1 logout
Disconnected at Tue Jul 7 00:07:09 PDT 2015
….

BaseLog (baselog_YYMMDDHHMMSS): Contains a record of what happens when the

base station tries to process the raw data files to the end data products.

1:23:44 27 Jan 2016 UTC: INFO: BaseLog.py(92): Process id = 4710
21:23:44 27 Jan 2016 UTC: INFO: Utils.py(670): Python version 2.7.6
21:23:44 27 Jan 2016 UTC: INFO: Utils.py(679): Numpy version 1.8.2
21:23:44 27 Jan 2016 UTC: INFO: Utils.py(688): Scipy version 0.13.3
21:23:44 27 Jan 2016 UTC: INFO: Base.py(1346): Invoked with command
line [/usr/local/basestation/Base.py --mission_dir
/home/pilot/repro/sg150_009 --verbose --make_dive_profiles --
make_dive_bp$
21:23:44 27 Jan 2016 UTC: INFO: Base.py(1348): PID:4714
21:23:44 27 Jan 2016 UTC: INFO: Base.py(1390): Started processing
21:23:44 27 Jan 2016 UTC
21:23:44 27 Jan 2016 UTC: INFO: Base.py(1418): Instrument ID = 150
21:23:44 27 Jan 2016 UTC: INFO: Base.py(911): No .pagers file found -
skipping .pagers processing

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 70

21:23:44 27 Jan 2016 UTC: INFO: Base.py(1450): Processing
comm_merged.log
21:23:44 27 Jan 2016 UTC: INFO: Base.py(1470): Finished processing
comm_merged.log
21:23:45 27 Jan 2016 UTC: INFO: Base.py(1569): Processing seaglider
selftests
21:23:45 27 Jan 2016 UTC: INFO: Base.py(1592): No new selftests to
processed
21:23:45 27 Jan 2016 UTC: INFO: Base.py(1594): Processing pdoscmd.bat
logs
21:23:45 27 Jan 2016 UTC: INFO: Base.py(1610): No pdos logfiles found
to process
21:23:45 27 Jan 2016 UTC: INFO: Base.py(1617): Processing dive(s)
21:23:45 27 Jan 2016 UTC: WARNING: Base.py(1628): No fragment size
found for 0 - using 8192 as default
21:23:45 27 Jan 2016 UTC: INFO: Base.py(280): fragment_size = 8192
21:23:45 27 Jan 2016 UTC: INFO: Base.py(383): Processing
/home/pilot/repro/sg150_009/sg0001dz
21:23:45 27 Jan 2016 UTC: INFO: Base.py(702): Checking fragment
/home/pilot/repro/sg150_009/sg0001dz.1a.x00
….

Engineering File (.eng): In this file the data present in .asc file is restated but converted into

engineering units.

%version: 66.11
%glider: 150
%mission: 11
%dive: 168
%basestation_version: 2.8
%start: 08 01 115 10 25 39
%columns:
elaps_t_0000,elaps_t,depth,head,pitchAng,rollAng,pitchCtl,rollCtl,vbd
CC,rec,GC_phase,sbect.condFreq,sbect.tempFreq,sbe43.O2Freq,wlbb2f.red
Count,wlbb2f.blueCount,wlbb2f.fluorCount,wlb$
%data:
37562.586 23.586 185.000 296.300 -66.100 1.000 -10.741 0.933 397.901
0.000 2.000 8029.283 5798.782 3754.541 72.000 74.000 51.000 543.000
419.000 268.000 35.000
37572.596 33.596 194.000 284.500 -65.000 5.000 -10.741 0.905 335.352
1.000 2.000 8030.105 5781.068 NaN NaN NaN NaN NaN 397.000 291.000
75.000
37582.582 43.582 191.000 275.600 -67.500 5.000 -10.741 0.905 273.054
2.000 2.000 8029.979 5794.335 NaN NaN NaN NaN NaN 382.000 303.000
98.000
37592.578 53.578 228.000 279.900 -67.400 -0.200 -10.741 0.905 213.269
3.000 2.000 8030.358 5796.838 NaN NaN NaN NaN NaN 390.000 294.000
104.000
….

netCDF Files (.nc): This file captures all processed files and is self-ducumenting. NetCDF

file is meant primarily for sharing data between scientific users.

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 71

Appendix B – Base station calibration file example
(Seaglider)

%sg_calib_constants.m
% values for basestation calculations, diveplot.m, etc.
% last edited 23-Feb-15, F.Stahr

% basic glider and mission params
id_str = '150' ;

%mass = 53.652 ; % in kg, for PortSusan
mass = 53.912 ; % for open ocean waters

mission_title = '20150707_009';
%mission_title = 'Univ of Cyprus';

%rho0 = 1022.8 ; % in kg/m3 for Puget Sound
rho0 = 1029.2 ; % for open ocean waters

%volmax = 52859 ; % projected for Puget Sound
%volmax = 52904.3; ; % from Puget Sound regression, 23-Feb-15
volmax = 52935 ; % projection for ocean ballast

% regressed from PS 23-Feb-15, hydrodynamic model params
hd_a = 1.69279e-03;
hd_b = 1.29775e-02;
hd_c = 1.04316e-05;

pitchbias = 0; % pitch reference in regressions

% software motor limits - not used by Base 2.08
pitch_min_cnts = 459 ;
pitch_max_cnts = 3719 ;
roll_min_cnts = 160 ;
roll_max_cnts = 3940 ;
vbd_min_cnts = 480 ;
vbd_max_cnts = 3960 ;
vbd_cnts_per_cc = -3.9809 ; %DRH 20150708 -4.0767 ;

% CT sensors cal constants
calibcomm = 'SN 0071 cal 14-Jan-15'; % SN and cal date
t_g = 4.36930384E-03 ;
t_h = 6.36992015E-04 ;
t_i = 2.57456023E-05 ;
t_j = 2.83939021E-06 ;
c_g = -1.00037548E+01 ;
c_h = 1.13004296E+00 ;
c_i = -1.12554014E-03 ;
c_j = 1.76934797E-04 ;
cpcor = -9.5700000E-08 ;
ctcor = 3.2500000E-06 ;
sbe_cond_freq_min = 2.8 ; % kHz, from cal for 0 salinity
sbe_cond_freq_max = 8.5 ; % kHz, est for greater than 32.5
sbe_temp_freq_min = 2.8 ; % kHz, from cal for 1 deg T
sbe_temp_freq_max = 7.0 ; % kHz, from cal for 32.5 deg T

%below splits apply at 500m level by default
QC_cond_spike_shallow=0.005; % was .006 20160128, #

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 72

0.15/ARGO_sample_interval_m, # [S/ml/m] Carnes 0.02
QC_cond_spike_deep=0.0009; %was .001 20160128, #
0.025/ARGO_sample_interval_m, # [S/ml/m] Carnes 0.01
QC_temp_spike_shallow = 0.10;
QC_temp_spike_deep = 0.050; % below 500m; %added 20150309 DRH (J.
Bennett suggestion .01 for both)
QC_cond_spike_depth = 600;
QC_temp_spike_depth = 600;
QC_spike_comm = 'Spike defined as (abs(v2-0.5*(v3+v1)) - 0.5*abs(v3-
v1)) / 0.5*abs(d3-d1)';
QC_median_comm = 'Median Filter on C and T as follows: marked
probably bad if a point falls outside 2 std of the local 9 point
window';

QC_temp_min=10; %':-2.5, # [degC] Carnes, compare global Schmid -2.5
(labsea?) MDP -4.0
QC_temp_max=40; %':43.0, # [degC] Carnes, compare global Schmid 40.0
QC_salin_min=35.0; %':19.0, # [PSU] was 2.0 per Carnes; ditto Schmid
but we can't fly in waters that fresh
QC_salin_max=41.0; %':45.0, # [PSU] Carnes, compare global Schmid
41.0

% SBE oxygen cal constants
comm_oxy_type= 'SBE 43f';
calibcomm_oxygen = 'SN 129, 04-May-11'; % SN and cal date
Soc = 2.4977E-04 ;
Foffset = -8.1950E+02 ;
o_a = -9.9371E-04;
o_b = 1.3160E-04;
o_c = -1.4794E-06;
o_e = 3.60E-02;
PCor = 0; % used as flag to force usage of new algorithm

% this glider also carries WET Labs BB2F-VMG SN 450, last cal 15-Jun-
11
calibcomm_scatterometer = 'WET Labs BB2F-VMG SN 450, 07-Jun-11'; %
SN and cal date
scale_470 = 1.28e-5; %(m^-1 sr^-1)/counts
dark_counts_470 = 51;
resolution_counts_470 = 1.0;
%calibration to be implemented in processing:
%Vol_scatter_470 = scale_470*(OUTPUT - dark_counts_470); % (m^-1 sr^-
1)

scale_700 = 3.250e-6; %(m^-1 sr^-1)/counts
dark_counts_700 = 49;
resolution_counts_700 = 2.2;
%calibration to be implemented in processing:
%Vol_scatter_700 = scale_700*(OUTPUT - dark_counts_700); % (m^-1 sr^-
1)

scale_fluor = 0.0161; %(micrograms / liter)/count
dark_counts_fluor = 56;
resolution_counts_fluor = 2.2;
max_counts_fluor = 4121;
%calibration to be implemented in processing:
%Chl_conc_fluor = scale_fluor*(OUTPUT - dark_counts_fluor); %
(micrograms/liter)

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 73

Appendix C – SOS Profile – GetCapabilities Response

<?xml version="1.0" encoding="UTF-8"?>
<sos:Capabilities xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:swes="http://www.opengis.net/swes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 version="2.0.0"
 xsi:schemaLocation="http://www.opengis.net/fes/2.0
 http://schemas.opengis.net/filter/2.0/filterAll.xsd
 http://www.opengis.net/swes/2.0
 http://schemas.opengis.net/swes/2.0/swes.xsd
 http://www.opengis.net/sos/2.0

http://schemas.opengis.net/sos/2.0/sosGetCapabilities.xsd
 http://www.opengis.net/gml/3.2
 http://schemas.opengis.net/gml/3.2.1/gml.xsd
 http://www.opengis.net/ows/1.1
 http://schemas.opengis.net/ows/1.1.0/owsAll.xsd">
 <ows:ServiceIdentification>
 <ows:Title xml:lang="eng">SOS for EGO Glider Data</ows:Title>
 <ows:Abstract xml:lang="eng">
 52North Sensor Observation Service - Data Access for EGO Glider Data
 </ows:Abstract>
 <ows:ServiceType>OGC:SOS</ows:ServiceType>
 <ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
 <ows:Profile>
 http://www.opengis.net/spec/OMXML/2.0/conf/countObservation
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/OMXML/2.0/conf/geometryObservation
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/OMXML/2.0/conf/measurement
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/OMXML/2.0/conf/samplingPoint
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/OMXML/2.0/conf/spatialSampling
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/core
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/daRetrieval
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/foiRetrieval
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/insertionCap
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/json
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/kvp-core
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/obsInsertion
 </ows:Profile>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 74

 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/pox
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/rest</ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/resultInsertion</ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/resultRetrieval
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/sensorInsertion
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/soap
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SOS/2.0/conf/updateSensorDescription
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/core
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/general-encoding-rules
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/text-encoding-rules
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/uml-block-components
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/uml-record-components
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-components
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-encodings
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/xsd-block-components
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/xsd-record-components
 </ows:Profile>
 <ows:Profile>
 http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-components
 </ows:Profile>
 <ows:Profile>
http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-encodings
 </ows:Profile>
 <ows:Fees>NONE</ows:Fees>
 <ows:AccessConstraints>NONE</ows:AccessConstraints>
 </ows:ServiceIdentification>
 <ows:ServiceProvider>
 <ows:ProviderName>52North</ows:ProviderName>
 <ows:ProviderSite xlink:href="http://52north.org/swe"/>
 <ows:ServiceContact>
 <ows:IndividualName>TBA</ows:IndividualName>
 <ows:PositionName>TBA</ows:PositionName>
 <ows:ContactInfo>
 <ows:Phone>
 <ows:Voice>+49(0)251/396 371-0</ows:Voice>
 </ows:Phone>
 <ows:Address>
 <ows:DeliveryPoint>Martin-Luther-King-Weg 24</ows:DeliveryPoint>
 <ows:City>Münster</ows:City>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 75

 <ows:AdministrativeArea>
 North Rhine-Westphalia
 </ows:AdministrativeArea>
 <ows:PostalCode>48155</ows:PostalCode>
 <ows:Country>Germany</ows:Country>
 <ows:ElectronicMailAddress>
 info@52north.org
 </ows:ElectronicMailAddress>
 </ows:Address>
 </ows:ContactInfo>
 </ows:ServiceContact>
 </ows:ServiceProvider>
 <ows:OperationsMetadata>
 <ows:Operation name="GetCapabilities">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/kvp?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 <ows:Post xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/pox">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/xml</ows:Value>
 <ows:Value>text/xml</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Post>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="AcceptFormats">
 <ows:AllowedValues>
 <ows:Value>application/xml</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="AcceptVersions">
 <ows:AllowedValues>
 <ows:Value>2.0.0</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="Sections">
 <ows:AllowedValues>
 <ows:Value>All</ows:Value>
 <ows:Value>Contents</ows:Value>
 <ows:Value>FilterCapabilities</ows:Value>
 <ows:Value>InsertionCapabilities</ows:Value>
 <ows:Value>OperationsMetadata</ows:Value>
 <ows:Value>ServiceIdentification</ows:Value>
 <ows:Value>ServiceProvider</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="updateSequence">
 <ows:AnyValue/>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="DescribeSensor">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/kvp?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 76

 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 <ows:Post xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/pox">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/xml</ows:Value>
 <ows:Value>text/xml</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Post>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="procedure">
 <ows:AllowedValues>
 <ows:Value>
 http://static-namespace.gliders.eu/glider-0123
 </ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="procedureDescriptionFormat">
 <ows:AllowedValues>
 <ows:Value>http://www.opengis.net/sensorML/1.0.1</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="validTime">
 <ows:AnyValue/>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetFeatureOfInterest">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/kvp?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 <ows:Post xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/pox">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/xml</ows:Value>
 <ows:Value>text/xml</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Post>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="featureOfInterest">
 <ows:AllowedValues>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/C16/current/21a/
 </ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="observedProperty">
 <ows:AllowedValues>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P01/current/PPSBPR01/
 </ows:Value>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P02/current/TEMP/
 </ows:Value>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 77

 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P02/current/CNDC
 </ows:Value>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P02/current/PSAL/
 </ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="procedure">
 <ows:AllowedValues>
 <ows:Value>
 http://static-namespace.gliders.eu/glider-0123
 </ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="spatialFilter">
 <ows:AllowedValues>
 <ows:Range>
 <ows:MinimumValue>0.0 -122.6819</ows:MinimumValue>
 <ows:MaximumValue>52.0464393 13.72376</ows:MaximumValue>
 </ows:Range>
 </ows:AllowedValues>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetObservation">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/kvp?">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/x-kvp</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Get>
 <ows:Post xlink:href="http://bridges.demo.52north.org/EGO-glider-
 sos/service/pox">
 <ows:Constraint name="Content-Type">
 <ows:AllowedValues>
 <ows:Value>application/xml</ows:Value>
 <ows:Value>text/xml</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Post>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="featureOfInterest">
 <ows:AllowedValues>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/C16/current/21a/
 </ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="observedProperty">
 <ows:AllowedValues>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P01/current/PPSBPR01/
 </ows:Value>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P02/current/TEMP/
 </ows:Value>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P02/current/CNDC/
 </ows:Value>
 <ows:Value>
 http://vocab.nerc.ac.uk/collection/P02/current/PSAL/
 </ows:Value>
 <ows:Value>op_2</ows:Value>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 78

 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="offering">
 <ows:AllowedValues>
 <ows:Value>http://www.52north.org/test/offering/1</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="procedure">
 <ows:AllowedValues>
 <ows:Value>
 http://static-namespace.gliders.eu/glider-0123
 </ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="responseFormat">
 <ows:AllowedValues>
 <ows:Value>http://www.opengis.net/om/2.0</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="spatialFilter">
 <ows:AllowedValues>
 <ows:Range>
 <ows:MinimumValue>0.0 -122.6819</ows:MinimumValue>
 <ows:MaximumValue>52.0464393 13.72376</ows:MaximumValue>
 </ows:Range>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="temporalFilter">
 <ows:AllowedValues>
 <ows:Range>
 <ows:MinimumValue>2008-10-29T00:00:00.000Z</ows:MinimumValue>
 <ows:MaximumValue>2015-12-09T13:45:15.000Z</ows:MaximumValue>
 </ows:Range>
 </ows:AllowedValues>
 </ows:Parameter>
 </ows:Operation>
 <ows:Parameter name="service">
 <ows:AllowedValues>
 <ows:Value>SOS</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 <ows:Parameter name="version">
 <ows:AllowedValues>
 <ows:Value>2.0.0</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 </ows:OperationsMetadata>
 <sos:filterCapabilities>
 <fes:Filter_Capabilities>
 <fes:Conformance>
 <fes:Constraint name="ImplementsQuery">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsAdHocQuery">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsFunctions">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsResourceld">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinStandardFilter">
 <ows:NoValues/>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 79

 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsStandardFilter">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinSpatialFilter">
 <ows:NoValues/>
 <ows:DefaultValue>true</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsSpatialFilter">
 <ows:NoValues/>
 <ows:DefaultValue>true</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinTemporalFilter">
 <ows:NoValues/>
 <ows:DefaultValue>true</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsTemporalFilter">
 <ows:NoValues/>
 <ows:DefaultValue>true</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsVersionNav">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsSorting">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsExtendedOperators">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsMinimumXPath">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 <fes:Constraint name="ImplementsSchemaElementFunc">
 <ows:NoValues/>
 <ows:DefaultValue>false</ows:DefaultValue>
 </fes:Constraint>
 </fes:Conformance>
 <fes:Spatial_Capabilities>
 <fes:GeometryOperands>
 <fes:GeometryOperand xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:Envelope"/>
 </fes:GeometryOperands>
 <fes:SpatialOperators>
 <fes:SpatialOperator name="BBOX">
 <fes:GeometryOperands>
 <fes:GeometryOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:Envelope"/>
 </fes:GeometryOperands>
 </fes:SpatialOperator>
 </fes:SpatialOperators>
 </fes:Spatial_Capabilities>
 <fes:Temporal_Capabilities>
 <fes:TemporalOperands>
 <fes:TemporalOperand xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 <fes:TemporalOperators>
 <fes:TemporalOperator name="Before">
 <fes:TemporalOperands>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 80

 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="After">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="Begins">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="Ends">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="EndedBy">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="BegunBy">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="During">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 81

 <fes:TemporalOperator name="TEquals">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="TContains">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="TOverlaps">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="Meets">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="MetBy">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 <fes:TemporalOperator name="OverlappedBy">
 <fes:TemporalOperands>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimeInstant"/>
 <fes:TemporalOperand
xmlns:ns="http://www.opengis.net/gml/3.2"
 name="ns:TimePeriod"/>
 </fes:TemporalOperands>
 </fes:TemporalOperator>
 </fes:TemporalOperators>
 </fes:Temporal_Capabilities>
 </fes:Filter_Capabilities>
 </sos:filterCapabilities>
 <sos:contents>
 <sos:Contents>
 <swes:procedureDescriptionFormat>

BRIDGES D3.3 – Interface standards for applications of deep and ultra-deep glider

13/05/2016 82

 http://www.opengis.net/sensorML/1.0.1
 </swes:procedureDescriptionFormat>
 <swes:observableProperty>
 http://vocab.nerc.ac.uk/collection/P01/current/PPSBPR01/
 </swes:observableProperty>
 <swes:observableProperty>
 http://vocab.nerc.ac.uk/collection/P02/current/TEMP/
 </swes:observableProperty>
 <swes:observableProperty>
 http://vocab.nerc.ac.uk/collection/P02/current/CNDC/
 </swes:observableProperty>
 <swes:observableProperty>
 http://vocab.nerc.ac.uk/collection/P02/current/PSAL/
 </swes:observableProperty>
 <swes:offering>
 <sos:ObservationOffering xmlns:ns="http://www.opengis.net/sos/2.0">
 <swes:identifier>
 http://www.52north.org/test/offering/1
 </swes:identifier>
 <swes:procedure>
 http://static-namespace.gliders.eu/glider-0123
 </swes:procedure>
 <sos:observedArea>
 <gml:Envelope>
 <gml:lowerCorner>54.9301168 1.2598505</gml:lowerCorner>
 <gml:upperCorner>52.5654455 0.2231123</gml:upperCorner>
 </gml:Envelope>
 </sos:observedArea>
 <sos:phenomenonTime>
 <gml:TimePeriod gml:id="phenomenonTime_1">
 <gml:beginPosition>2016-01-01T00:22:00</gml:beginPosition>
 <gml:endPosition>2016-01-01T12:33:00</gml:endPosition>
 </gml:TimePeriod>
 </sos:phenomenonTime>
 <sos:resultTime>
 <gml:TimePeriod gml:id="resultTime_1">
 <gml:beginPosition>2016-01-01T00:22:00</gml:beginPosition>
 <gml:endPosition>2016-01-01T12:33:00</gml:endPosition>
 </gml:TimePeriod>
 </sos:resultTime>
 <sos:responseFormat>
 http://www.bridges-h2020.eu/sos/om-netcdf-ego/1.0
 </sos:responseFormat>
 </sos:ObservationOffering>
 </swes:offering>
 </sos:Contents>
 </sos:contents>
</sos:Capabilities>

